Курс включает знакомство с основными понятиями теории машинного обучения и прогнозирования. В первой части курса рассматривается формализация основных задач машинного обучения, излагаются алгоритмы обучения для линейно разделимых обучающих выборок, методы градиентного спуска и его разновидности, метод обучения нейронных сетей, метод опорных векторов, ядерные методы машинного обучения, регрессионный анализ, метрические и вероятностные модели машинного обучения, логические модели машинного обучения. Во второй части рассматриваются задачи адаптивного прогнозирования в нестохастических теоретико-игровой и сравнительной постановках: игры с прогнозами и прогнозы с использованием экспертных стратегий.
Курс по искусственному интеллекту
Факультет
Механико-математический факультет
Преподаватели
Где
Главное здание, ауд. 1610
Когда
Среда 15:10–16:40
Нагрузка:
Аудиторная [ч]: 24
Самостоятельная [ч]: 12
Семестр
Весенний семестр 2024/2025 учебного года
Записалось / всего мест
197 / 200