

Global Limits of Economic Growth

Lomonosov Moscow State University, Inter-Departmental Course, 2024-2025, Spring Fall

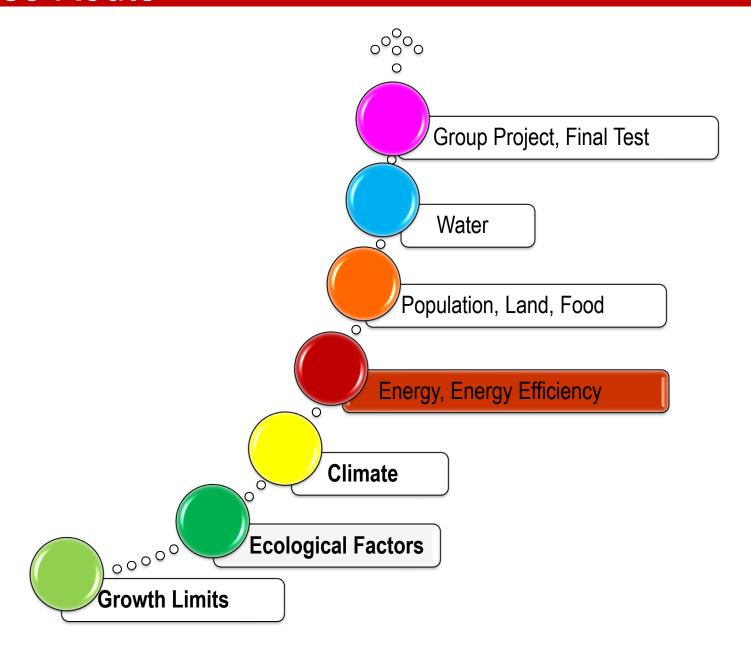
Course Reader:

Evgeniya Anatolyevna Shvets, PhD.

e.shvec@edu.mgubs.ru

Requirements to Pass the Course

- 1) At least 50% of sessions are attended (6 sessions)
- 2) At least 60% points for the final course test
- 3) Individual Project (Presentation) is done properly and delivered in time


General Scheme for Resource Limitations Analysis

Scheme for the Individual Project (1-2 students per 1 project)

			St	eps of Analysis		
	Step 1	Step 2		Step 3	Step 4	
Resources	Lim Role/		tations produced for		Ways used to	Suggestions how
	Importance	World economy	National economy	Industries/ Business	overcome existing limitations	to improve these ways of coping with limitations
Unique Resource						
or Problem						
selected by you						
Scale: world or a						
country or an						
industry						

Course Route

Pre-Reading and Food-for-Thought Assignment before and after Session 6 (March, 26)

RENEWABLES

- 1) What kind of data is presented in BP Statistical Reviews of World Energy (<u>bp.com or https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html</u>) regarding renewables?
- 2) What are the actual trends in this area?

Read the Situation Analysis "Brazil and Biofuels"

- 1) What were advantages and disadvantages of producing biofuels in Brazil?
- 2) What kind of measures to improve existing benefits and to reduce possible risks do you see?

Read the abstract of from Perkins J. "Confessions of an Economic Hit Man" (Chapter 33, pp.196-202):

- 1) What were positive and negative social and economic effects of oil dependence for Venezuela at different times?
- 2) How was the energy security understood by Chavez government and by multinational companies?

Venezuela: Saved by Saddam D CHAPTER 33

> I had watched Venezuela for many years. It was a classic example of a country that rose from rags to riches as a result of oil. It was also a model of the turmoil oil wealth foments, of the disequilibrium between rich and poor, and of a country shamelessly exploited by the corporatocracy. It had become the epitome of a place where old-style corporatocracy. It had become the ephonic of a place where our set.
>
> EHMs like me converged with the new-style, corporate version. The events I read about in the newspaper that day at Grour Zero were a direct result of the 1998 elections, when the poor disenfranchised of Venezuela elected Hugo Chavez by a landsl

their president. 1 He immediately instituted drastic measures control of the courts and other institutions and dissolving zuelan Congress. He denounced the United States for its imperialism," spoke out forcefully against globalization, a a hydrocarbons law that was reminiscent, even in no Jaime Roldós had brought to Ecuador shortly be went down. The law doubled the royalties charged panies. Then Chávez defied the traditional i state-owned oil company, Petróleos de Vene top executives with people loyal to him.2

ILO cilmate change and employment

Case study no. 1

Brazil and biofuels

Introduction

Increasing developments in how best to address climate change -February 2008 Increasing developments in how best to address climate change market responses none more so than in the ranid arouth of the alohal through mitigation and adaptation have in some cases led to aggressive included in the rapid growth of the global annual hinfuel market responses, none more so than in the rapid growth or the global annual biofuel five vears and capacity will double to 25 billion gallons over the next five years and could reach 80 billion gallons by 2020 (Riese, 2007).

This recent boom in biofuel production is generating vigorous debate on and environmental grounds. This case study will Ins recent boom in biofuel production is generating vigorous debate on examine the impact of climate change on livelihoods and employment. examine the impact of climate change on livelihoods and employment, and ite impact on the impact of climate change on livelihoods and employment, and ite impact on the impact of the im agriculture and poverty reduction. Biofuels

examine the impact of climate change on livelinoods and employment, agriculture and noverty reduction.

Global production of biofuels reached 20 million tons of oil equivalents reached 20 million tons of oil equivalents Global production of biofuels reached 20 million tons of oil equivalents energy consumption (International Financy 2007) Read transport fuel (Mtoe) In 2005, representing about 1% of total road transport fuel states together account for 90% (GTZ et al. 2006) of global energy consumption (International Energy Agency, 2007). Brazil and the standard in many narte of the United States together account for 90% (GIZ et al., 2006) or global world due to higher oil nrices climate change government incentives Supply. Ethanol production is increasing rapidly in many parts or the world due to higher oil prices, climate change, government incentives, and mandates on fuel hlending. world due to higher oil prices, climate change, government incentives on fuel blending.

Biofuels are liquid, solid or gas fuels derived from biomass, either from their metaholic waste. Biomass refers Biofuels are liquid, solid or gas fuels derived from biomass, either from nlante and animale (For an avnlanation of to organic matter made from their metabolic waste. Biomass refers

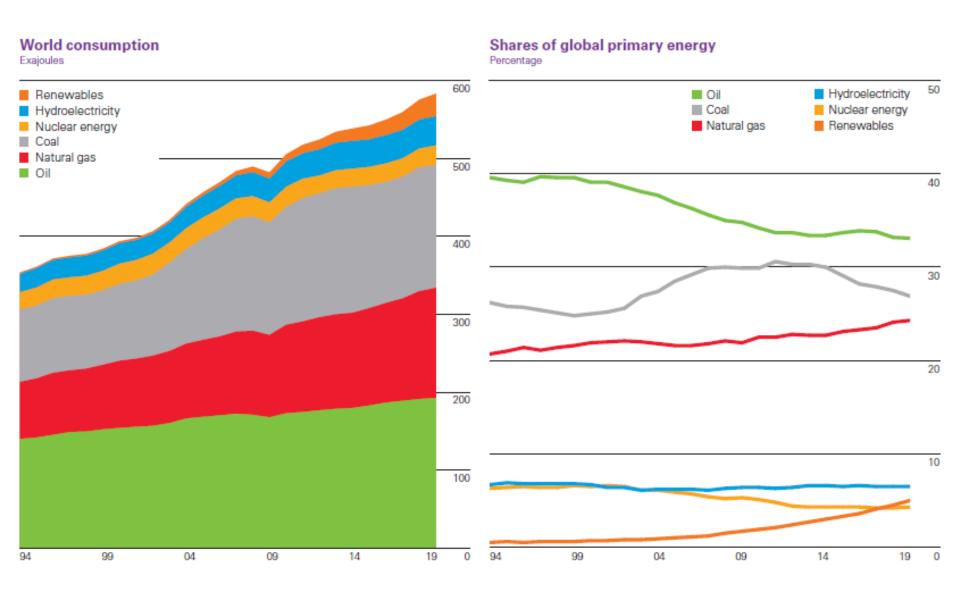
firet, and cannot danaration hinfuele cae Rox 1 }

(For an explanation of first- and second generation biofuels see Box 1.) Brazil's ethanol experience

Session 6

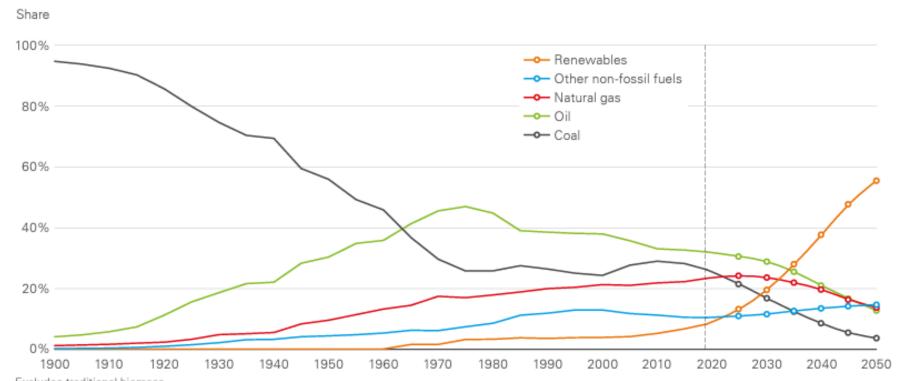
Energy Resources and Energy Demand-Supply

2025


The Aims of the Session 6

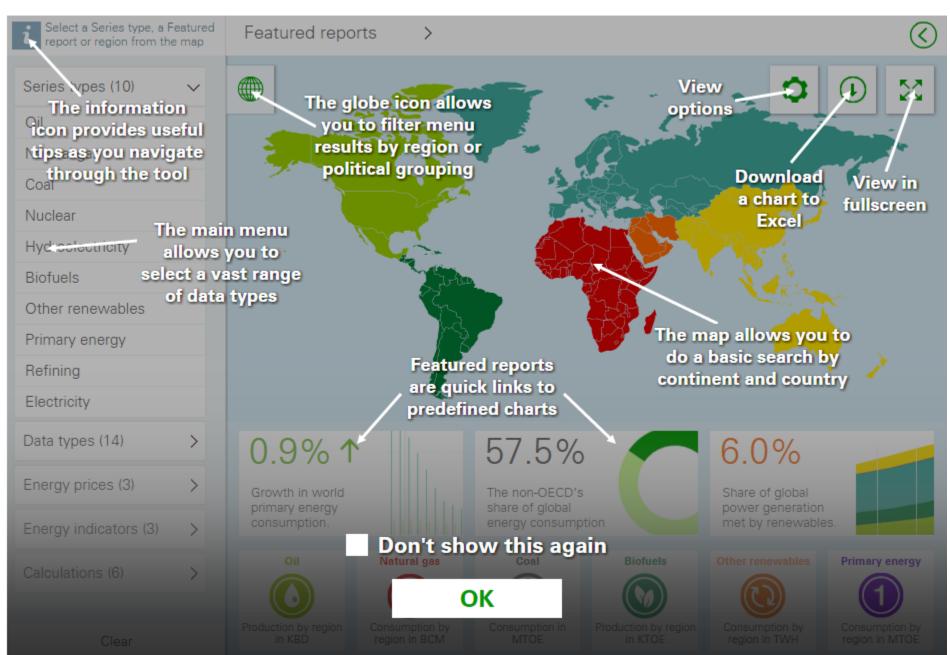
- 1. To know basic information on the World Market of Energy Resources (types, dominating resources, trends)
- 2. To know peculiarities of different energy indicators and be able to interpret them correctly
- 3. To assess the effect of alternative energy sources comprehensively

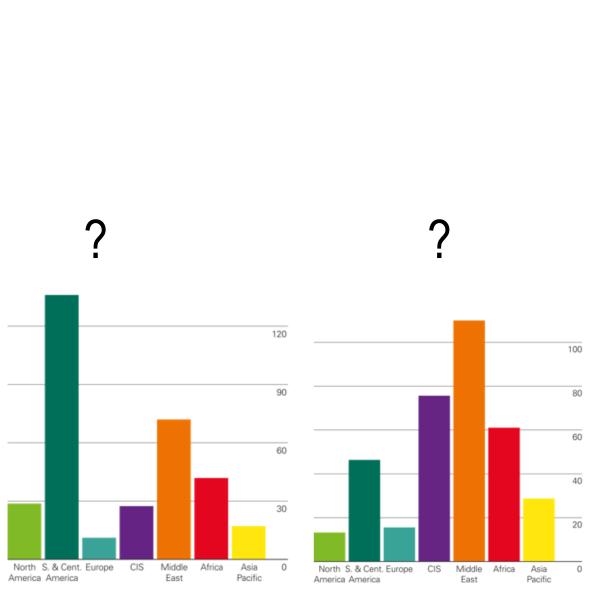
PLAN of the Session 6

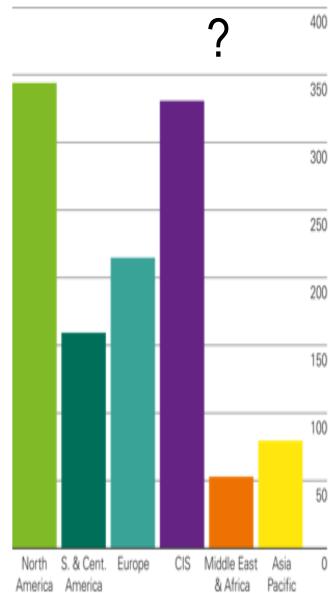

- 1. World Market of Energy Resources
- 2. Energy Intensity of Different Economies and Industries
- 3. Alternative Energy Sources vs. Nonrenewables

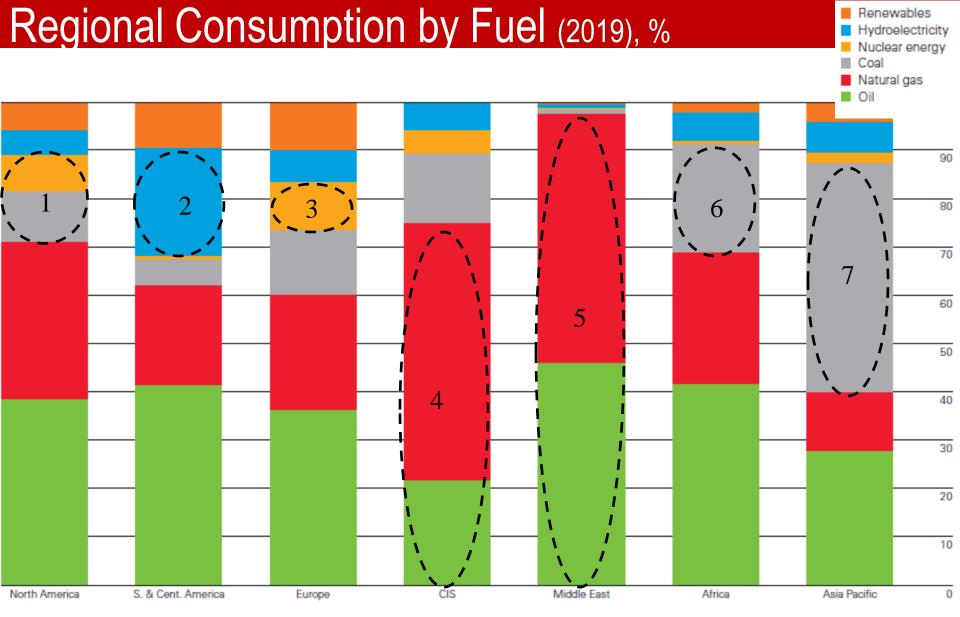
World Primary Energy Sources

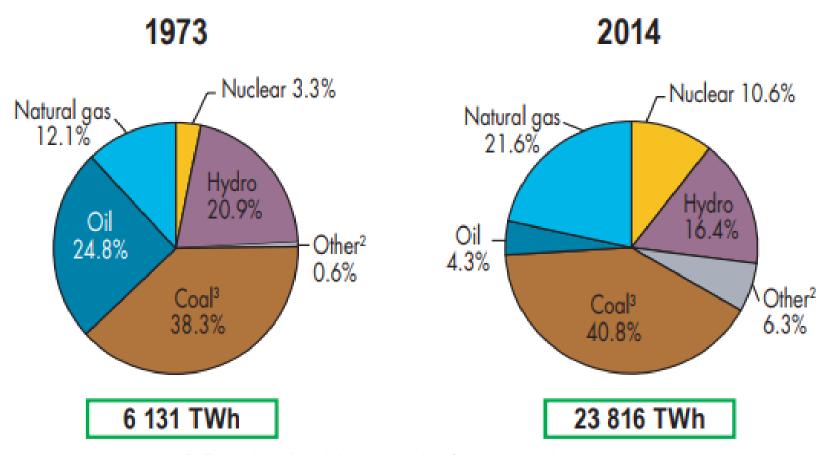
Changing nature of global energy markets: more diverse energy mix, increased competition and greater customer choice

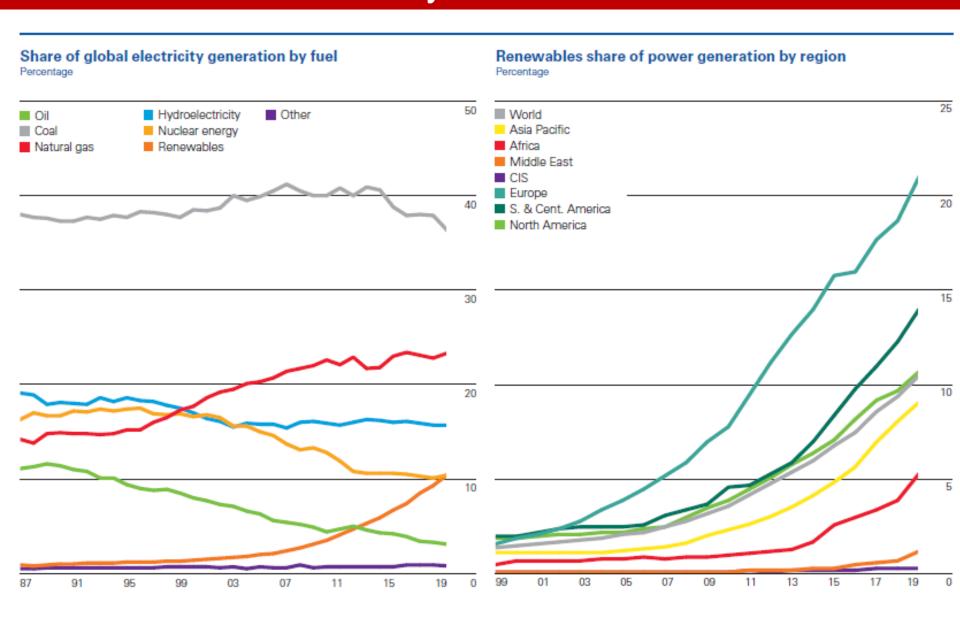

Share of primary energy in Accelerated


Excludes traditional biomass
Other non-fossil fuels includes hydro and nuclear


Source: BP Statistical Review of World Energy, 2023.


Energy charting tool


R/P ration of ... Coal, Oil, Gas



Fuel Shares of Electricity Generation

- Excludes electricity generation from pumped storage.
 - Includes geothermal, solar, wind, heat, etc.
- 3. In these graphs, peat and oil shale are aggregated with coal.

Fuel Shares of Electricity Generation

World's Largest Electricity Producers

Producers ¹	TWh	% of world total
People's Rep. of China	5 666	23.8
United States	4 319	18.1
India	1 287	5.4
Russian Federation	1 062	4.5
Japan	1 036	4.4
Canada	656	2.8
Germany	622	2.6
Brazil	591	2.5
France	557	2.3
Korea	546	2.3
Rest of the world	7 474	31.3
World	23 816	100.0

56.2% of the world's electricity (IEA, 2016)

Net exporters	TWh
France	67
Canada	46
Paraguay	41
Germany	34
Czech Republic	16
Sweden	16
Norway	16
People's Rep. of China	11
Bulgaria	9
Ukraine	8
Others	64
Total	328

Net importers	TWh
United States	53
Italy	44
Brazil	34
United Kingdom	21
Finland	18
Belgium	18
Netherlands	15
Hungary	13
Iraq	12
Thailand	11
Others	117
Total	356

2014 data

2014 data

17 2014 data © OECD/IEA, 2015

Electricity Production from Fossil Fuels

Coal ¹	TWh
People's Rep. of China	4 115
United States	1 713
India	967
Japan	349
Germany	285
South Africa	232
Korea	232
Russian Federation	158
Australia	152
Poland	132
Rest of the world	1 372
World	9 707

Natural gas	TWh
United States	1 161
Russian Federation	533
Japan	421
Islamic Rep. of Iran	196
Mexico	172
Saudi Arabia	160
Egypt	135
Korea	130
Turkey	121
Thailand	119
Rest of the world	2 007
World	5 155

Oil	TWh
Saudi Arabia	152
Japan	116
Islamic Rep. of Iran	59
Iraq	50
Kuwait	43
Pakistan	42
United States	40
Brazil	35
Mexico	33
Indonesia	26
Rest of the world	427
World	1 023

2014 data

2014 data

2014 data

© OECD/IEA, 2015

Producers of Nuclear Electricity

Producers	TWh	% of world total
United States	831	32.8
France	436	17.2
Russian Federation	181	7.1
Korea	156	6.2
People's Rep. of China	133	5.2
Canada	108	4.3
Germany	97	3.8
Ukraine	88	3.5
Sweden	65	2.6
United Kingdom	64	2.5
Rest of the world	376	14.8
World	2 535	100.0

20	4	Λ	~	_	٠
20	П	4	u	а	ld

Net installed capacity	GW
United States	99
France	63
Japan	42
Russian Federation	25
People's Rep. of China	24
Korea	21
Germany	14
Canada	14
Ukraine	13
Sweden	9
Rest of the world	60
World	384

2014 data

Country (top-ten producers)	% of nuclear in total domestic electricity generation
France	78.4
Ukraine	48.6
Sweden	42.3
Korea	28.7
United States	19.2
United Kingdom	19.0
Russian Federation	17.0
Canada	16.4
Germany	15.6
People's Rep. of China	2.3
Rest of the world ¹	9.4
World	10.7

2014 data

Producers of Hydro Electricity

Producers	TWh	% of world total
People's Rep. of China	1 064	26.7
Canada	383	9.6
Brazil	373	9.4
United States	282	7.1
Russian Federation	177	4.4
Norway	137	3.4
India	132	3.3
Venezuela	87	2.2
Japan	87	2.2
France	69	1.7
Rest of the world	1 192	30.0
World	3 983	100.0

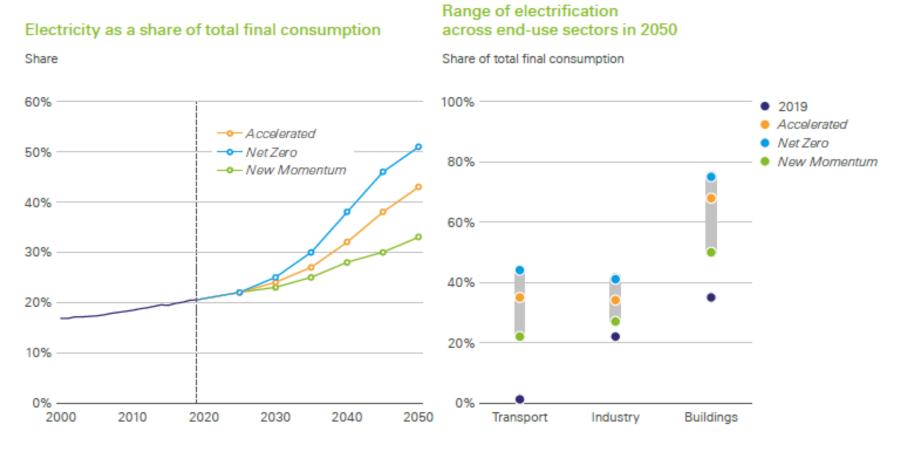
Russian Federation	177	4.4
Norway	137	3.4
India	132	3.3
Venezuela	87	2.2
Japan	87	2.2
France	69	1.7
Rest of the world	1 192	30.0
World	3 983	100.0
2014 data		

Net installed capacity	GW
People's Rep. of China	311
United States	102
Brazil	89
Canada	76
Russian Federation	51
Japan	50
India	40
Norway	31
France	25
Turkey	24
Rest of the world	372
World	1 171

2014 data

Country (top-ten producers)	% of hydro in total domestic electricity generation
Norway	96.0
Venezuela	68.3
Brazil	63.2
Canada	58.3
People's Rep. of China	18.7
Russian Federation	16.7
France	12.2
India	10.2
Japan	8.4
United States	6.5
Rest of the world ²	15.6
World	16.7

2014 data


Sources: IEA, United Nations.

Shares of World Electricity Consumption

 Includes agriculture, commercial and public services, residential, and non-specified other.

Electricity demand expands significantly as prosperity in emerging economies grows and the world increasingly electrifies

COVID-19 influence on Energy Sector

Main impacts:

- Direct impact(s)
- 2) Indirect impact(s)

The COVID-19 pandemic had a dramatic impact on energy markets, with both primary energy and carbon emissions falling at their fastest rates since the Second World War. Nevertheless, renewable energy continued to grow, with solar power recording its largest ever increase.

- 1. Primary energy consumption fell by 4.5% in 2020 with oil demand accounting for 72% of the decrease
- Renewables power grew by a record 358 TWh and increased its share of total generation to 12%
- Carbon emissions fell by 6.2% and the carbon intensity of the energy mix (the average carbon emitted per unit of energy used) declined by 1.8%

Units in EJ unless	Level			Growth rate per annum			Share			
otherwise stated				(9	(%) (EJ)		J)	(%)		
	2009	2019	2020	2009-19	2020	2009-19	2020	2009	2019	2020
Consumption										
Primary energy	482	582	557	1.9	-4.5	10	-24	100	100	100
Oil	167	192	174	1.4	-9.5	2.5	-18	35	33	31
Natural gas	106	141	138	2.9	-2.3	3.5	-2.9	22	24	25
Coal	145	158	151	0.9	-4.2	1.3	-6.2	30	27	27
Nuclear	25	25	24	-0.2	-4.1	-0.1	-0.9	5.3	4.3	4.3
Hydro	31	38	38	2.1	1.0	0.7	0.5	6.4	6.5	6.9
Renewables	8.2	29	32	13	9.7	2.1	2.9	1.7	5.0	5.7
Wind	2.6	13	14	17	11	1.0	1.5	0.5	2.2	2.5
Solar	0.2	6.3	7.6	41	20	0.6	1.3	0.0	1.1	1.4
Other renewables*	5.4	9.9	10	6.3	0.8	0.5	0.1	1.1	1.7	1.8

COVID-19 influence on Energy Sector

Main impacts:

- the direct impact of coronavirus on employees of energy companies and on the stability of enterprises
- 2) the consequences of various kinds of restrictive measures for the fight against coronavirus, leading on the one hand to *disruptions in the supply chain*, and on the other to *a sharp decline economic activity and reduced demand for energy*
- 3) a tough price triggered by a drop in demand competition and, as a result, a sharp drop in prices

What's next? Decarbonization.

Definitions of some energy terms & indicators

Energy productivity	Gross Domestic Product per unit of energy input - the inverse of energy intensity.			
Energy intensity	Energy use per unit of Gross Domestic Product e.g. toe/USD 1000 of GDP.			
Energy management	The set of processes and tools to manage energy demand within enterprises i.e. managing the process of improving energy efficiency, managing energy costs and managing energy risks.			
Energy conservation	Reducing energy use by reducing or stopping an energy using activity e.g. switching off a light or a machine.			
Energy performance	The ratio between delivery of an output e.g. production output and energy input.			
Energy efficiency	Formally the ratio between energy input and energy output but usually used to mean energy performance.			
Energy consumption	The quantity of energy used.			
Energy use	The manner or type of application of energy.			
Energy	Electricity, fuels, steam, heat, compressed air, and other similar media.			

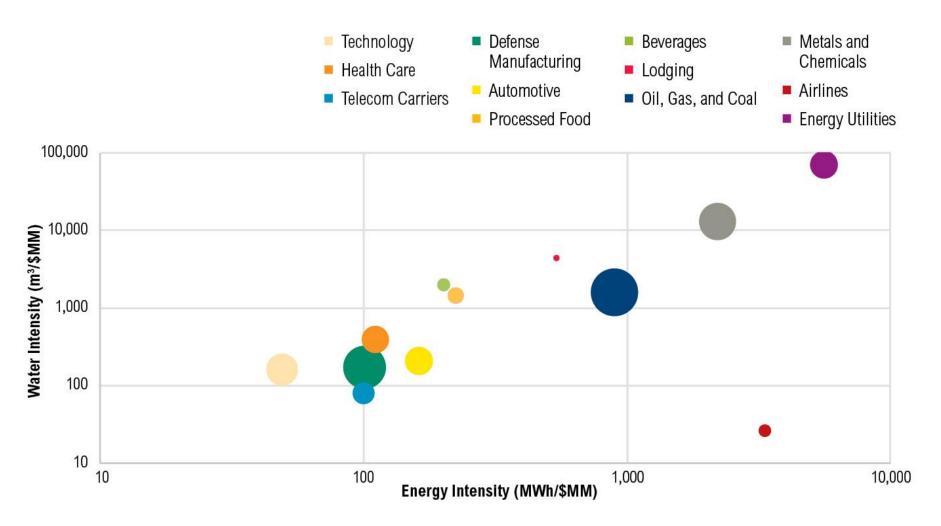
Energy Intensity

Energy intensity is the ratio of energy use to output.

What factors influence the energy intensity of a country?

Energy Intensity of Industries

Nearly two-thirds of industrial energy use is accounted for by 4 industries:


- 1. Chemical and petrochemical
- Iron and steel
- 3. Non-metallic minerals
- 4. Paper and pulp

Sources:

- IEA, 2007
- Fawkes S., Oung K., Thorpe D., (2016) Best
 Practices and Case Studies for Industrial Energy
 Efficiency Improvement An Introduction for Policy
 Makers. Copenhagen Centre on Energy Efficiency.

Breakdown of industrial energy use by sector 2004. Chemical & Non-specified 16% petrochem 30% Transport equipment 1% Wood & wood products 1% Construction 1% Mining & quarrying 2%~ Textile & leather 2%: Machinery 4% Non-ferrous metals 4% Food & tobacco 5% Paper & pulp 6% Iron & steel 19% Non-metallic minerals 9%

Water and Energy Intensity of Major Industries

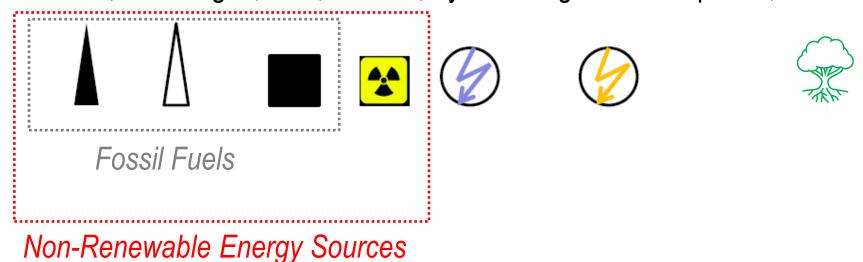
Note: Bubble area proportional to total industry revenue.

Source: Industry data for 2013 accessed via Bloomberg Terminal (Bloomberg 2015).

Energy Intensity of Countries

What factors influence the indicator of energy intensity?

Factors influencing an economy's overall energy intensity


- 1. requirements for general standards of living
- 2. weather conditions in an economy
- 3. energy efficiency of appliances and buildings
- 4. fuel economy of vehicles
- 5. vehicular distances travelled (frequency of travel or larger geographical distances)
- 6. better methods and patterns of transportation
- 7. capacities and utility of mass transit
- 8. energy rationing or conservation efforts
- 9. economic shocks such as disruptions of energy due to natural disasters, wars, massive power outages,
- 10.unexpected new energy sources
- 11.efficient uses of energy
- 12.energy subsidies

The list is not complete still!

Renewable Energy

World Market of Energy Resources

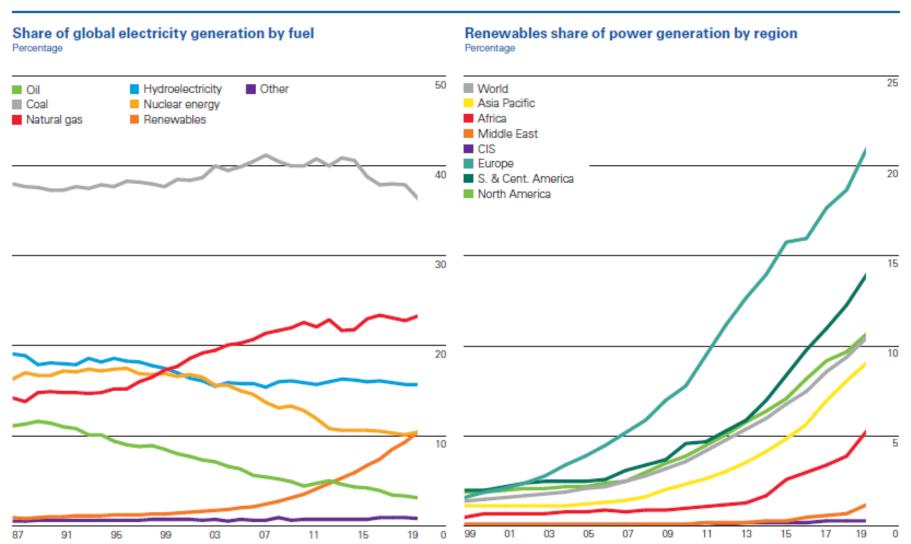
- Primary energy sources
 - Oil, natural gas, coal, nuclear, hydro and geothermal power, biomass

World Market of Energy Resources

- Primary energy sources
 - Oil, natural gas, coal, nuclear, hydro and geothermal power, biomass

- Secondary energy sources
 - Electricity, such renewables as wind and solar power, different derivatives from oil like fuel oil, kerosene etc.

Alternative Energy ≈ Renewables

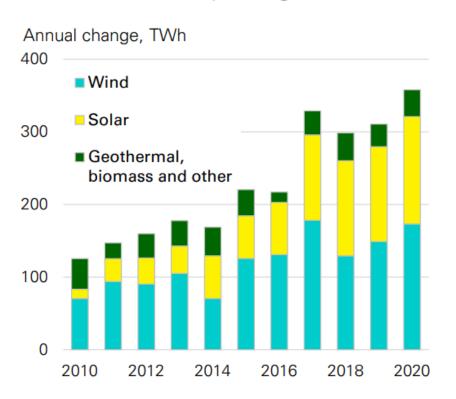

- 6 main renewable energy technologies:
 - 1) wind power
 - 2) solar energy
 - 3) biomass energy
 - 4) biofuels
 - 5) geothermal energy (?)
 - 6) hydroelectric power
- Nuclear energy

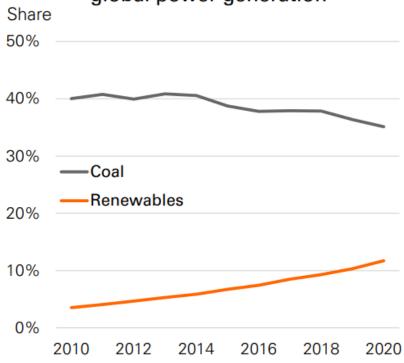

All of them faced unique economic challenges that made it difficult for them to compete with energy generated by traditional fossil fuels.

Nowadays the situation is changing.

Global Trends in Energy Use

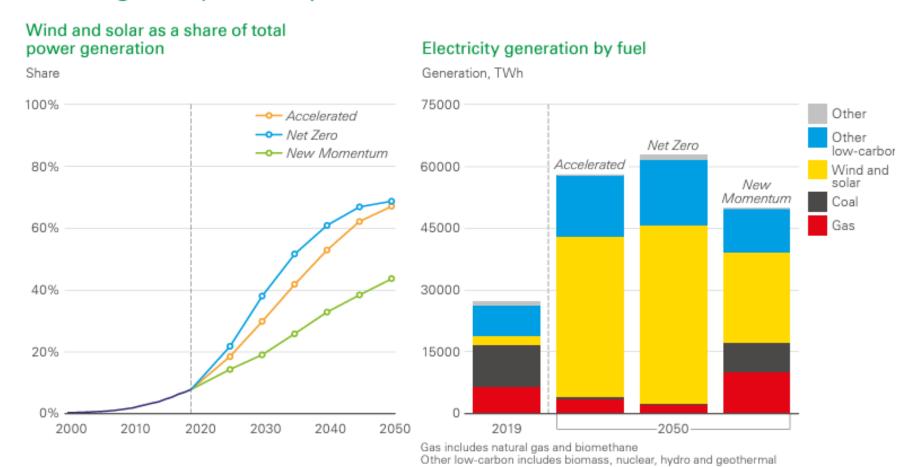
 Renewables are the fastest growing energy source (but from a relatively small base)




Power generation

bp

Renewable power generation


Share of renewables and coal in global power generation

bp Statistical Review of World Energy

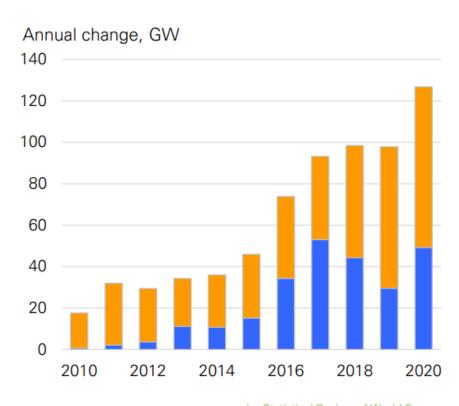
© BP p.l.c. 2021

Growth in power generation is dominated by wind and solar as the global power system decarbonizes

Structural changes in global macro conditions in Favor of Renewables

What factors do contribute to the Growth of Renewables?

- 1. ...
- 2. ...
- 3. ...
- 4. . . .
- 5. ...


Wind and solar power capacity

bp

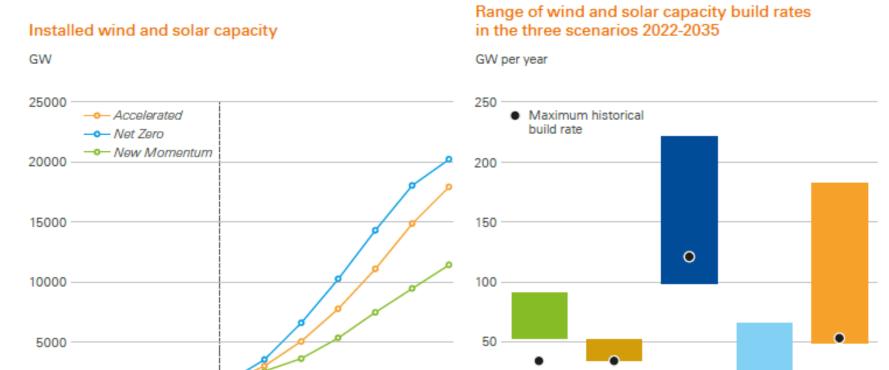
Wind capacity

Solar capacity

bp Statistical Review of World Energy

© BP p.l.c. 2021

Wind and solar capacity



^{*2016} Energy Outlook (EO 2016) capacity profiles based on EO 2016 generation and EO 2020 historic capacity factors.

bp Statistical Review of World Energy

Wind and solar power expands rapidly, requiring significant acceleration in financing and building new capacity

2050

US

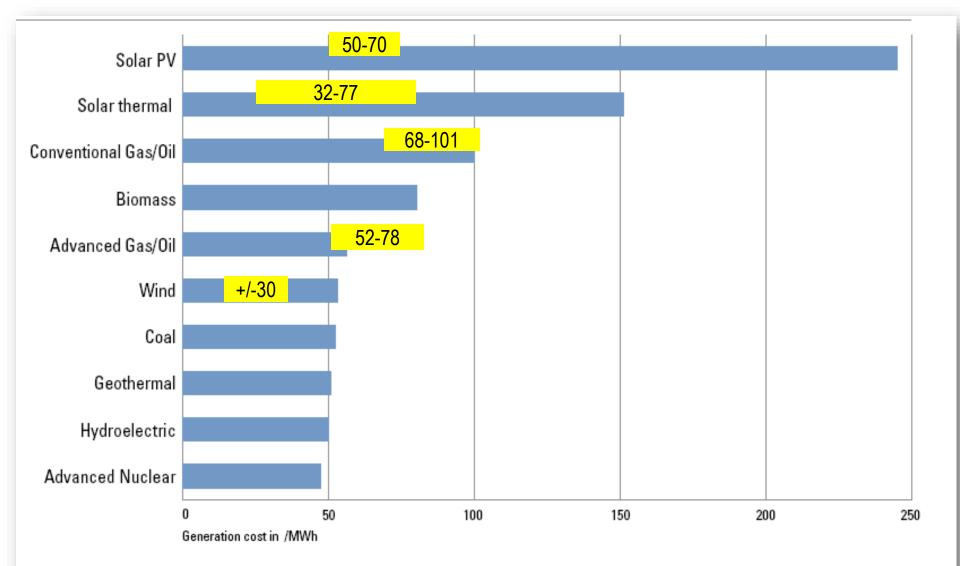
EU

China

India

Rest of World

2000


2010

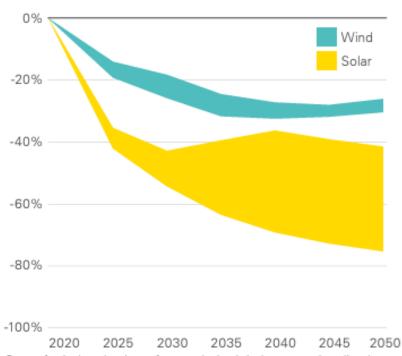
2020

2030

2040


Cost Competitiveness of Electricity Sources

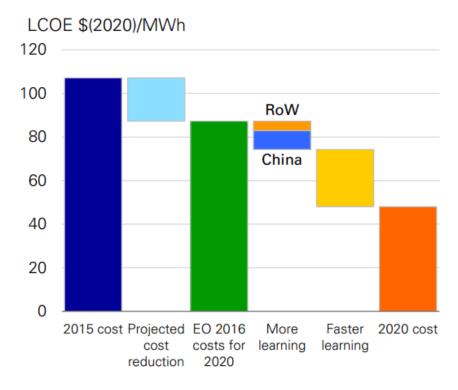
Source: IEA, European Solar Thermal Industry Association, 2006.


Wind and solar power grow rapidly

Installed wind and solar capacity

Cost of wind and solar

Cost of wind and solar refers to their global average levelized cost of electricity, including their integration costs


Cost of wind and solar

Wind cost

LCOE \$(2020)/MWh 120 100 80 RoW 60 China 40 20 0 2015 cost Projected EO 2016 2020 cost More Faster costs for learning cost learning reduction 2020

Solar cost

LCOE: Levelized cost of energy, global benchmark.

bp Statistical Review of World Energy
© BP p.l.c. 2021

Table 1b. Estimated unweighted levelized cost of electricity (LCOE) and levelized cost of storage

(LCOS) for new resources entering service in 2027 (2021 dollars per megawatthour)

						Total		Total LCOE
	Capacity	Levelized	Levelized	Levelized	Levelized	system		or LCOS
	factor	capital	fixed	variable	transmis-	LCOE or	Levelized	including
Plant type	(percent)	cost	O&Mª	cost	sion cost	LCOS	tax credit ^b	tax credit
Dispatchable technologies	\sim							
Ultra-supercritical coal	85%	\$52.11	\$5.71	\$23.67	\$1.12	\$82.61	NA	\$82.61
Combined cycle	87%	\$9.36	\$1.68	\$27.77	\$1.14	\$39.94	NA	\$39.94
Advanced nuclear	90%	\$60.71	\$16.15	\$10.30	\$1.08	\$88.24	-\$6.52	\$81.71
Geothermal	90%	\$22.04	\$15.18	\$1.21	\$1.40	\$39.82	-\$2.20	\$37.62
Biomass	83%	\$40.80	\$18.10	\$30.07	\$1.19	\$90.17	NA	\$90.17
Resource-constrained tech	nologies							
Wind, onshore	41%	\$29.90	\$7.70	\$0.00	\$2.63	\$40.23	NA	\$40.23
Wind, offshore	44%	\$103.77	\$30.17	\$0.00	\$2.57	\$136.51	-\$31.13	\$105.38
Solar, standalone ^c	29%	\$26.60	\$6.38	\$0.00	\$3.52	\$36.49	-\$2.66	\$33.83
Solar, hybrid ^{c,d}	28%	\$34.98	\$13.92	\$0.00	\$3.63	\$52.53	-\$3.50	\$49.03
Hydroelectric ^d	54%	\$46.58	\$11.48	\$4.13	\$2.08	\$64.27	NA	\$64.27
Capacity resource technolo	gies							
Combustion turbine	10%	\$53.78	\$8.37	\$45.83	\$9.89	\$117.86	NA	\$117.86
Battery storage	10%	\$64.03	\$29.64	\$24.83	\$10.05	\$128.55	NA	\$128.55

Source: U.S. Energy Information Administration, Annual Energy Outlook 2022

O&M = operations and maintenance

Indicators of changes

Less Expensive?

- Solar energy became 80% cheaper (2017) than 7 years ago
- Costs of renewable energy are (2017) 7 times less in 9 years
- In 2028 solar energy will become so cheap and widespread that it will satisfy the entire total energy demand of mankind, according to the Technical director of Google and well-known technological futurist **Ray Kurzweil** (2017).
- Heinberg R. (2009), Searching for a Miracle: There is no reliable scenario in which alternative energy sources can completely replace fossil fuels when it completely runs out

Risks of Solar and Wind Energy

	SOLAR stations	WIND stations
Environmental Risks	Deforestation, utilization problems, cleaning chemicals, soil deterioration, local warming effect	Construction materials (steel, copper, aluminum, concrete), infrastructure around, special roads, deforestation (1 wind generator → 0.35 sq.km), industrial pollution, fire cause, utilization problem, local warming effect

Risks of Solar and Wind Energy

	SOLAR stations	WIND stations		
Risks for Health	Utilization → soil & water contamination, especially in Africa, due to the impossibility of rare earths safe storage or utilization	Reduction of bird's population, negative effect on health of animals and people on local farms nearby, animal's miscarriages on local farms		
Risks of New Technologies	Public unpopularity of this topic (it is customary to respond only positively)	Underestimating noise pollution (only the audible range is considered, without infrasound and vibrations) Public unpopularity of this topic (it is customary to respond only positively)		
Energy Security Risks	Dependence on sun Deterioration of the stability of the power grid and dependence on electricity imports	Dependence on wind Deterioration of the stability of the power grid and dependence on electricity imports		