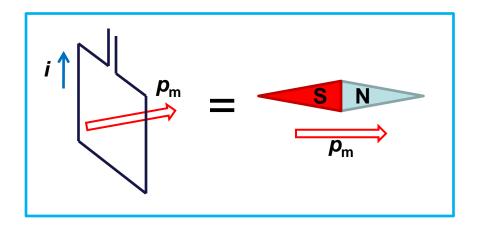
МАГНИТНЫЕ МАТЕРИАЛЫ

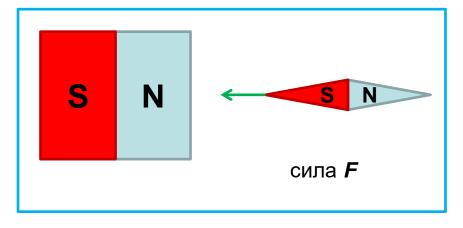
Казин Павел Евгеньевич к. лекц. БХА, тел. 8 495 939 34 40, E-mail: kazin@inorg.chem.msu.ru Магнитные материалы – материалы, сильно взаимодействующие с магнитным полем и (или) сами создающие магнитное поле

Электрон, нуклоны \rightarrow спин \rightarrow магнитный момент (μ)

Движущиеся заряженные частицы ightarrow магнитное поле ightarrow магнитный момент

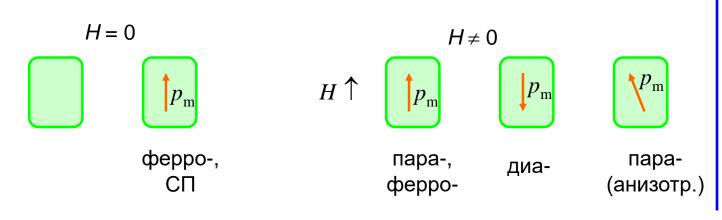

 μ (ядерн.) << μ (электр.) \to магнитные свойства определяются электронами

Литература


- 1. В.Т.Калинников, Ю.В.Ракитин. Введение в магнетохимию. М.: Наука, 1980
- 2. П.Селвуд. Магнетохимия. М.: ИЛ, 1958
- 3. С.В.Вонсовский. Магнетизм. М.: Наука, 1984
- 4. Р.Карлин. Магнетохимия. М.: Мир, 1989
- 5. А. Вест. Химия твердого тела, т.2. М.: Мир, 1988
- 6. Г.С.Кринчик. Физика магнитных явлений. М.: Изд-во МГУ, 1976
- 7. Д.Д.Мишин. Магнитные материалы. М.:Высшая школа, 1981

МАГНИТНОЕ ПОЛЕ

электрический ток i oмагнитное поле, напряженность H рамка с током oмагнитный момент $p_{\rm m}$



момент сил $\mathbf{P} = \mathbf{F} \times \mathbf{I} = \mathbf{p}_{m} \times \mathbf{H}$,

сила в неоднородном поле $F_x = p_m(dH/dx)$

Основные определения

Образец материала

 $p_{\rm m}$ – магн. момент образца материала *М* – намагниченность χ — магнитная восприимчивость

$$M = p_{\rm m}/V$$

$$M_{\text{\tiny VZ}} = p_{\text{m}}/m$$

диа-, пара- :
$$M \sim H$$
, $\chi = M/H$, $\chi_{yд} = M_{yg}/H$, $\chi_{мол} = \chi_{yд} M_{r}$

 $B = \mu_0(H + M) = \mu\mu_0H$, $\mu_0 = 4\pi \times 10^{-7}$ Гн/м. [H]=A/м, [B]=Тл, [M]=A/м, [χ]=безразм.

СГСМ: $B = H + 4\pi M = (1 + 4\pi \chi)H = \mu H$, $[H] = \Im$, $[B] = \Gamma c$, $[M] = \Im m e / c m^3 = \Gamma c$, $[\chi] = \Gamma c$, [

В переменном поле $\chi_{\text{дин}} = \chi' - i \chi''$

в вак.
$$B = H$$
 (СГСМ), $\mu = 1$, $\chi = 0$

Основные типы магнетизма

Диамагнетизм

эл. оболочки в атомах, эл. газ в металлах

 $\chi_{\rm VZ} \sim -10^{-6} \, {\rm cm}^3/{\rm F}$

 $B < B_{\text{Bak}}, \mu < 1, \chi < 0$

Парамагнетизм

наличие μ у неспар. эл-нов, эл. газ в металлах

 $\chi_{\rm yg} \sim 10^{-6} - 10^{-3} \, {\rm cm}^3/{\rm r}$

 $B > B_{\text{Bak}}$, $\mu > 1$, $\chi > 0$

Ферро(ферри-)магнетизм

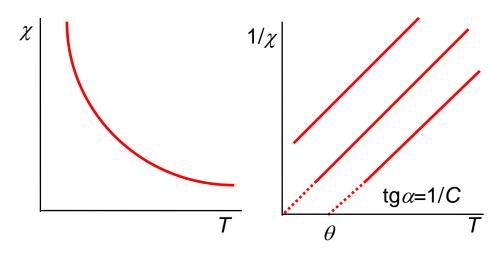
▶ упорядочение атомных µ

 $\chi_{\rm VД}$ до 10⁵; $\chi = f(H)$

 $B >> B_{\text{вак}}, \, \mu >> 1, \, \chi >> 0$

Сверхпроводимость

▶ эл-ные пары, бозэ-конденсация B = 0; $4\pi \chi = -1$


Температурнозависимый парамагнетизм

Электроны – *I*, **s.** Атом, ион \rightarrow неспаренные эл. $\rightarrow \mu_{\rm sob}$ [$\mu_{\rm B}$], $\mu_{\rm B}$ = $e\hbar/2m_{\rm e}c$ – магнетон Бора

$$L$$
, S , спин-орб. взаимод. (λ) \to J = L + S , ..., $|$ L - S $|$ $\mu_{\rm B}$ = 9.274*10⁻²¹ эрг/ Θ = 9.274*10⁻²⁴ Aм²

Относительно высокие температуры, малые поля: $kT>>\mu_{
m odd}H$

$$\chi_{\text{мол}} = N \mu_{\text{эфф}}^2/3kT$$
 \rightarrow $\chi_{\text{мол}} = C/T$, чаще $\chi_{\text{мол}} = C/(T-\theta)$, иногда $\chi_{\text{мол}} = C/(T-\theta) + N\alpha$

$$\mu_{\text{эфф}} = [(3k/N)\chi_{\text{мол}}T]^{1/2} = (8\chi_{\text{мол}}T)^{1/2}\mu_{\text{B}}$$
(CГСМ)

$$\mu_{\text{эфф}} = (8\text{C})^{1/2}\mu_{\text{B}}$$
 (если $\theta \neq 0$, при $T \rightarrow \infty$)

Многие соединения 3d-, 4d-элементов

Чисто спиновый:
$$\mu_{\text{эфф}}$$
= $g[S(S+1)]^{1/2}\mu_{\text{B}}, g$ ≈2

Соединения 4f-элементов

$$\mu_{\text{3}\phi\phi} = g[J(J+1)]^{1/2} \mu_{\text{B}},$$
 $n < 7, J = |L-S|; n > 7, J = L + S$
 $g = 1 + [J(J+1) - L(L+1) + S(S+1)]/[2J(J+1)]$

Чисто спиновый $\mu_{\mathrm{эфф}} = g[S(S+1)]^{1/2}\mu_{\mathrm{B}} = [\mathrm{n(n+2)}]^{1/2}\mu_{\mathrm{B}}$

Кон- фиг.	Соединение	Коорд. симм.	Терм	μ _{эфф} (теор.)	μ _{эфф} (эксп.)
d ¹	VCI ₄	Тетр.	² E	1.73	1.72
d^3	KCr(SO ₄) ₂ ·12H ₂ O	Окт.	4 A $_{2g}$	3.87	3.84
d ⁴	CrSO ₄ ·6H ₂ O	Окт.	⁵ E _g	4.90	4.82
d ⁵	$K_2Mn(SO_4)_2 \cdot 6H_2O$	Окт.	⁶ A _{1g}	5.92	5.92
d ⁵	(Et ₄ N)FeCl ₄	Тетр.	⁶ A ₁	5.92	5.88
d ⁶	$(Et_4N)_2FeCl_4$	Тетр.	5 E	4.90	5.40
d ⁷	Cs ₂ CoCl ₄	Тетр.	4 A $_2$	3.87	4.71
d ⁸	$(NH_4)_2Ni(SO_4)_2\cdot 6H_2O$	Окт.	3 A $_{2g}$	2.83	3.23
d ⁹	$K_2Cu(SO_4)_2 \cdot 6H_2O$	Окт.	2E_g	1.73	1.91

Отклонения $\mu_{\rm эфф}$ – примешивание возбужд. состояний за счет спин-орбит. взаимод. $g=2(1-\alpha\lambda/\Delta),~\alpha\sim 1$ Для 3d $|\lambda|=200-800$ см⁻¹, $\Delta\sim 10000$ см⁻¹ $\to \Delta g=|g-2|\sim 0.01-0.2$

Магнитные свойства соединений 4f-элементов

 λ велико, Δ мало − по сравнению с kT (комнатная температура)

$$\mu_{a \oplus b} = g[J(J+1)]^{1/2} \mu_B$$
, $g=1+[J(J+1)-L(L+1)+S(S+1)]/[2J(J+1)]$ $f^n: n < 7, J=|L-S|; n > 7, J=L+S$

Ион	Состояние	g	g[J(J+1)] ^{1/2}	$\mu_{ m app}$, $\mu_{ m B}$
La ³⁺ , Ce ⁴⁺	4f ⁰ ¹ S ₀	-	0	0
Ce ³⁺ , Pr ⁴⁺	4f ¹ ² F _{5/2}	6/7	2.54	2.5
Pr³+	4f ² ³ H ₄	4/5	3.58	3.6
Nd ³⁺	4f ³ 4l _{9/2}	8/11	3.62	3.6
Pm ³⁺	4f ⁴ ⁵ l ₄	3/5	2.68	2.8
Sm ³⁺	4f ⁵ ⁶ H _{5/2}	2/7	0.84	1.5
Eu ³⁺ , Sm ²⁺	4f ⁶ ⁷ F ₀	0	0	3.4
Gd ³⁺ , Eu ²⁺	4f ⁷ ⁸ S _{7/2}	2	7.9	7.9
Tb ³⁺	4f ⁸ ⁷ F ₆	3/2	9.7	9.7
Dy ³⁺	4f ⁹ ⁶ H _{15/2}	4/3	10.6	10.5
Ho ³⁺	4f ¹⁰ ⁵ l ₈	5/4	10.6	10.5
Er ³⁺	4f ¹¹ ⁴ I _{15/2}	6/5	9.6	9.5
Tm ³⁺	4f ¹² ³ H ₆	7/6	7.6	7.3
Yb ³⁺	4f ¹³ ² F _{7/2}	8/7	4.5	4.5
Lu ³⁺ , Yb ²⁺	4f ¹⁴ ¹ S ₀	0	0	0

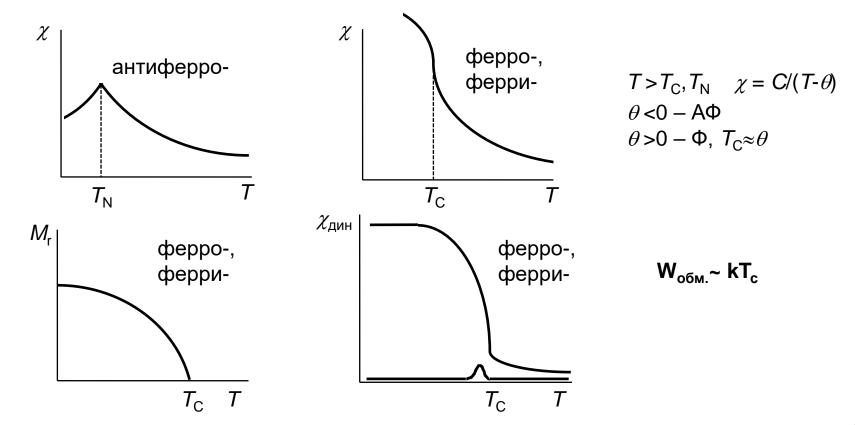
Ферро- и антиферромагнетики

Обменное взаимодействие — дальний порядок атомных магнитных моментов

J>0 ↑↑↑↑↑↑ Fe, CrO₂, (La,Sr)MnO₃ Ферромагнетик (Ф):

Антиферромагнетик (АФ): $J < 0 \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

J<0 $\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow$ Ферримагнетик:


Слабый ферромагнетик: J<0 >< ><

Cr, CuO

Fe₃O₄, BaFe₁₂O₁₉

YFeO₃

Температура упорядочения: температура Кюри T_{c} (Ф), Нееля T_N (АФ)

Атомные магнитные моменты

 $\mu_{\text{ат}} = gJ\mu_{\text{B}}$; чисто спиновый $\mu_{\text{ат}} = gS\mu_{\text{B}} = 2S\mu_{\text{B}} = n\mu_{\text{B}},$ n — число неспаренных электронов

Металлы

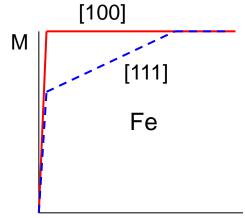
	T_{c}	n	эл.конф.а	ат.	эл.конф.м	іет .
Fe	1043	2.2	d^6s^2	\rightarrow	$d^{7.4}s^{0.6}$	→ 4.8e↑ 2.6e↓
Co	1404	1.7	d^7s^2			$\mu = 2.2 \; \mu_{B}$
Ni	631	0.6	d^8s^2			·

Шпинели (MnFe₂O₄ , NiFe₂O₄ , FeFe₂O₄ , ...)

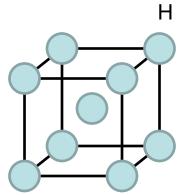
$$MeM_2O_4$$
 КПУ-О \uparrow Me (тэтр.) \downarrow M(окт.) \downarrow M(окт.) $\mu = |n_1(M)-n_2(Me)|_{\mu_B}$

Гранаты

$$R_3 Fe_5 O_{12} (R - P33)$$
 $3Fe^{\uparrow} 2Fe^{\downarrow}$ $\mu = |3\mu(R) - 5| \mu_B$


Гексаферриты

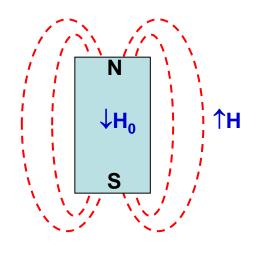
SrFe
$$_{12}$$
O $_{19}$ октаэдр 12k 6↑ μ = 4 · 5 μ = 20 μ м = 4 · 5 μ = 20 μ м = 4 · 5 μ = 20 μ м октаэдр 4f $_2$ 2 \downarrow октаэдр 2a 1↑ μ триг.бипир. 2b 1↑


Магнитокристаллическая анизотропия

Со, гекс., 1 ось [001]

$$\mathsf{W}_{\text{\tiny M.KP.}} = \mathsf{K}_1(\alpha_1{}^2\alpha_2{}^2 + \alpha_2{}^2\alpha_3{}^2 + \alpha_1{}^2\alpha_3{}^2) + \mathsf{K}_2\alpha_1{}^2\alpha_2{}^2\alpha_3{}^2$$

	K_1
Fe	4.72·10 ⁴ Дж/м ³
Co	4.52·10 ⁵ Дж/м ³
Ni	-5.7·10³ Дж/м³



Магнитоупругое взаимодействие

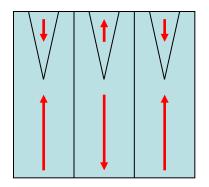
Магнитострикция: $\lambda = \Delta I/I$, $\lambda_s = \Delta I/I$ при M_s упругая энергия $W_{\text{м.упр.}} = E_{\text{Юнга}} \, \lambda_s^{\ 2}/2$

Магнитостатическая энергия

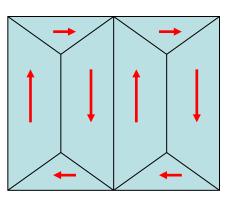
$$W_{MAIH.} = -(1/2)\mu_0 MH$$

$$H_0 = -NM$$
 $H_i = H - NM = H(1 - N\chi)$

∞ цилиндр, пластина вдоль поля	N=0
сфера	N=1/3
∞ цилиндр перпендик. полю	N=1/2
∞ пластина перпендик. полю	N=1


$$W_{\text{разм.}} = W_{\text{м.}} = -(1/2) \ \mu_0 MH_0 = (1/2)\mu_0 NM^2$$

$$N_x + N_y + N_z = 1$$

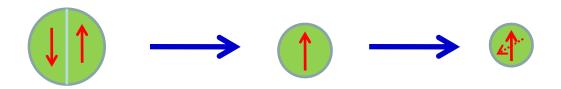

Магнитный материал

min W =
$$W_{oбм.}+W_{м.кр.}+W_{м.упр.}+W_{м.}$$

охлаждение образца (даже монокр.)
пара- \to ферро- M=0, \to min $W_{м.}$ \to образование доменной структуры


1 ось л.м.

3 оси л.м.



Доменные стенки

толщина границы $\delta = (kT_c/K_1a)^{1/2}$, а — расстояние между атомами энергия границы $E_{rp.} = 2(kT_cK_1/a)^{1/2}$ Fe: $\delta \sim 0.1$ мкм, $E_{rp.} = 2 \cdot 10^{-3} \text{Дж/м}^2$

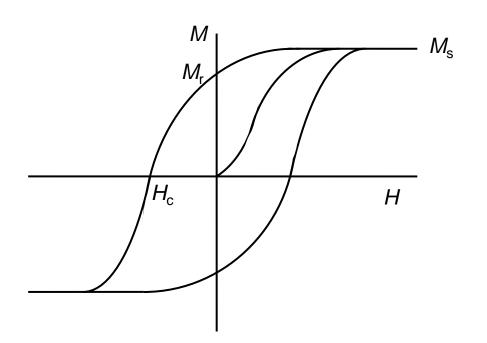
Немагнитные включения – пиннинг (закрепление) границ

Мелкие частицы - однодоменные

Сферич. частица с одной осью л.м. $D_{\rm kp.} = 36 (kT_{\rm c}K_{\rm 1}/a)^{1/2}/(\mu_0 M_{\rm s}^2)$

 $D_{\kappa p.}$

Fe 0.05 мкм

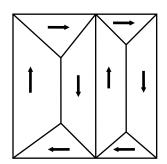

Mn-Bi 8 мкм

 $SrFe_{12}O_{19} \quad 0.8 \text{ MKM}$

Очень мелкие частицы - суперпарамагнитные

 $W_{\text{м.кр.}} \sim kT \to$ свободное вращение магнитного момента частицы $\chi_{\text{мол}} = C/(T-\theta), \quad C = \mu_{\text{ч}}^2/8n = (1/8) \; \mu_{\text{ат}}^2 \cdot n, \quad n-\text{число магнитных атомов в частице}$ Сферич. частица $d_{\text{с.п.}} = (25kT/K_1)^{1/3}$

Кривые намагниченности



Материал – микроструктура – $H_{\rm c}, \, \mu, \, M_{\rm r}, \, M_{\rm s}, \,$ магнитная энергия W=(1/2)HB.

магнитомягкие, магнитотвердые

При
$$T \rightarrow 0$$
 $M_{\text{s (мол)}} = \Sigma \mu_{\text{at}} = N \mu_{\text{мол}}$, $\mu_{\text{мол}} = 2 \text{S } \mu_{\text{B}}$

«прямоугольность» петли гист., M_r/M_s \downarrow текстура, оси л.м.

Доменная структура:

- обменная энергия
- магнитокрист. анизотропия
- магнитострикция
- магнитостатическая энергия

Намагничивание:

- упругое смещение границ доменов
- необратимое движение границ доменов
- разворот вектора намагниченности в домене
- парапроцесс

Обратимая намагниченность

Упругое смещение границ доменов: $\chi_{\text{нач.}} \sim \text{SM}_{\text{s}}^2/\text{E}_{\text{гр.}}$, S — площадь границ

Гистерезис намагниченности

1. Задержка движ. границ доменов на включениях, дефектах

$$H_c$$
 = pK_мcⁿ, с – концентрация примеси, n \approx 1 D – диаметр включения, при δ_{rp} <\delta_{rp}/D, при δ_{rp} >>D p=D/ δ_{rp} H_c = max при D ~ δ_{rp}

2. Однодоменные частицы – необратимые процессы вращения

Причина	Выр. для Н _с	Макс. знач. Н _с , кА/м		
		Fe	Co	Ni
Крист. анизотропия	$2K_1/\mu_0M_s$	40	480	11
Форма (длин. цил.)	M _s /2	850	700	250
Мех. напряжения	$3\lambda_s \sigma/\mu_0 M_s$	48	48	320
		(σ =	20000 кг	тс/см ²)

Материалы с максимально высокими магнитными параметрами

Co
$$T_c = 1404 \text{ K}$$

Сплав
$$60\%$$
Fe- 40% Co $B_s = 2.43$ Тл

Супермаллой:

$$\mu_{\text{HaY}} = 10^5$$
, $\mu_{\text{Makc}} = 10^6$, $H_c = 0.3 \text{ A/M}$

$$Nd_2Fe_{14}B$$
 $H_c = 1600 \text{ кA/м}, W_{Marh} = 400 \text{ кДж/м}^3$

$$Y_3 Fe_5 O_{12}$$
 $\rho = 10^{14} \text{ om} \cdot \text{cm}$

Применение

Техника (механика)

сепараторы, передача механических усилий, подшипники

<u>Электротехника</u>

электромоторы, электрогенераторы, трансформаторы, реле

<u>Электроника</u>

фильтры, резонаторы, антенны, магнитные экраны

Магнитная запись

запись, хранение и считывание информации, в т.ч. аудио-, видео.

<u>Медицина</u>

метки (диагностика), доставка лекарств, гипертермия (лечение)

магнитные сенсоры

магнитные жидкости

магнитное охлаждение

магнитооптика

магнитные полупроводники

Классификация магнитных материалов

металлы, сплавы, оксиды (керамика), композиционные, порошки, магнитные жидкости

Магнитомягкие

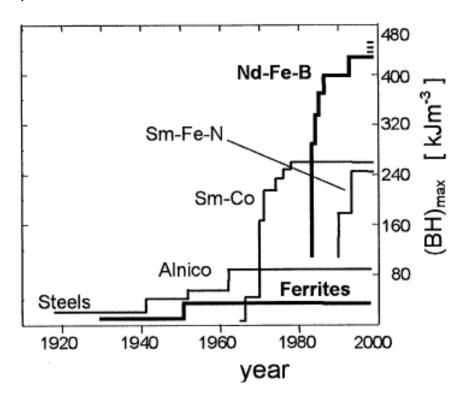
Общие требования:

- 1) узкая петля гистерезиса (малое H_c <1 кА/м, высокая μ) \to однородность, низкие K_1 , λ
- 2) высокая $M_{\rm s}$ и соотв. $B_{\rm s}$
- 3) минимальные АС-потери ightarrow высокое ho

Материал	Применение (параметры)
Технически чистое железо, железо-кобальтовые сплавы	Электромагниты (макс. $B_{\rm s}$ до 2.4Тл)
Электротехнические стали	Трансформаторы (выс. μ)
Пермаллои (железо-никелевые сплавы)	Трансформаторы, магнитные экраны (мин. H_c =0.3A/м, макс. μ =10 ⁶ , K_1 ~0)
Аморфные сплавы (Fe,Ni+B,C,Si)	То же
Магнитодиэлектрики	ВЧ трансформаторы (мин. $H_{\rm c}$, макс. μ , $ ho$)
Ферриты	ВЧ, СВЧ электроника (мин. $H_{\rm c}$, макс. $\mu, ho)$

Магнитотвердые

Общие требования:


- 1) широкая петля гистерезиса (высокая $H_{\rm c}{>}10$ кА/м) ightarrow высокая $K_{\rm m}$
- 2) высокая $M_{\rm r}$ и соотв. $B_{\rm r}$
- 3) высокая магнитная энергия $W_{\rm M}$ =(*BH*) $_{\rm max}$ (~ площадь гистерезиса)

Материал	Применение* (параметры)
Сталь (высокоуглеродистая)	{ Магниты ($H_{\rm c}$ =50 кА/м, $W_{\rm M}$ =5 кДж/м³) }
Сплав алнико (Fe-Al-Ni-Co)	Магниты (H_c =150 кА/м, W_M =80 кДж/м³)
Сплавы РЗЭ – кобальт (SmCo ₅)	Магниты (H_c =1000 кА/м, W_M =250 кДж/м³)
Сплав неодим-железо-бор (Nd- Fe-B, Fe ₁₄ Nd ₂ B)	Магниты (H_c =1600 кА/м, W_M =450 кДж/м³)
Сплав (пленки) кобальт-хром	Магнитная запись ($H_{\rm c}$ =150 кA/м)
Ферриты (гексаферрит)	Магниты (H_c =300 кА/м, W_M =40 кДж/м³) Магнитная запись (H_c =150-400 кА/м)
Гамма-оксид железа (γ-Fe ₂ O ₃)	Магнитная запись ($H_{\rm c}$ ~50 кА/м)

^{*}Магниты используются в электродвигателях, электрогенераторах, аудиотехнике, для передачи механических усилий.

Принципы создания сильных магнитов

- 1) монодоменные частицы (субмикро- и наноразмеры)
- 2) высокие $M_{\rm s}$, $K_{\rm 1}$ и $K_{\rm s}$
- 3) нанокомпозиты: магнитотвердые частицы в магнитомягкой матрице (в перспективе)

Достижения по магнитной энергии (кДж/м³) постоянных магнитов в 20 веке

Материалы для магнитной записи

Носитель магнитной записи (среда): магнитотвердые микро- и наночастицы в матрице 1 бит – группа частиц, намагниченных в одном направлении Тип записи: продольный, перпендикулярный (с 2006 г.) Гибкий носитель: вытянутые субмикронные частицы γ -Fe₂O₃(Co) в полимере, наночастицы гексаферрита бария (с 2006 г.) в полимере Жесткий носитель: наночастицы кобальта в матрице хрома, наногетерослои кобальт-медь (с 2006 г.).

Записывающая головка: магнитомягкий материал

Считывающая головка: магнеторезистивный материал

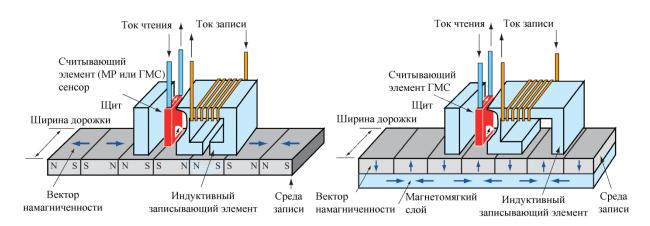
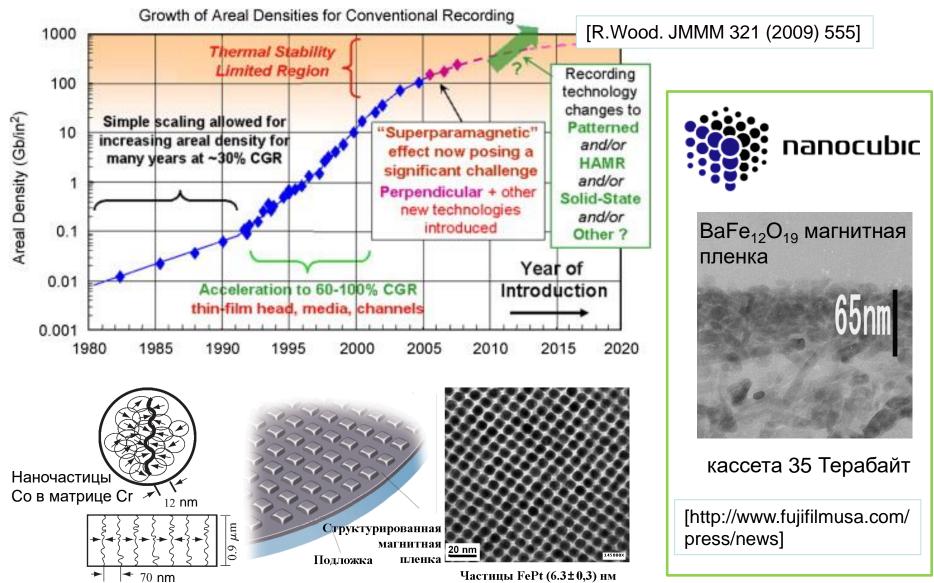



Схема реализации продольной и перпендикулярной записи

Развитие магнитной записи

Жесткие диски

Некоторые новые виды магнитных материалов

Материалы с колоссальным магниторезистивным эффектом

Эл. сопротивление сильно уменьшается в магнитном поле Манганиты (La,Sr)MnO₃. Датчики магнитного поля

Магнитоэлектрические материалы

Одновременно пьезоэлектрик и ферромагнетик BiFeO₃. Магнито-электрические преобразователи

Материалы для спинтроники

Магнитные полупроводники, слоистые наноструктуры Управление спином электрона при помощи электрического тока

Магнитокалорические материалы

 $Gd, Gd_5(Ge_{1-x}Si_x)_4$ Охлаждение за счет циклирования магнитного поля

Магнитные жидкости

Дисперсии наночастиц в жидкостях

Fe₃O₄ в органическом растворителе или воде

Уплотнители, невытекающая смазка, гипертермия, доставка лекарств, метки Дисперсии микрочастиц в жидкостях

Управляемая передача механического усилия (сцепление, амортизатор)