Вопросы к зачету по курсу "Флуктуации в природе и культуре "

Каждый билет соответствует одной лекции. По каждой лекции даются варианты заданий на выбор студента. Выполнение этих заданий освобождает от зачета в конце семестра. Можно решить задачу или написать эссе по изучаемому вопросу, а иногда будет так же дано графическое задание. Студентам выдаются необходимые для выполнения заданий тексты, изображения, а также бумага и заготовки для графических работ. Наиболее интересные работы студентов обсуждаются на следующей лекции и могут быть использованы при чтении курса в следующие годы.

1.

задача

Рассмотрим модель двумерного движения N молекул идеального газа в сосуде длиной a и шириной b, при температуре T. Молекулы представлены шариками радиуса r_0 , сталкивающимися друг с другом и со стенками по закону упругого удара. Шарики могут влетать в выделенный объем $V \ll ab$, через отверстие в перегородке длиной c. Оцените среднее значение для какой-нибудь из следующих флуктуирующих величин

- 1 Угол φ между направлением вектора скорости шарика и осью ОХ
- $\mathbf{2}$ Угол ψ падения шарика на стенку
- **3** Проекция v_x скорости шарика на ось ОХ
- **4** Координата шарика *х*
- 5 Величина равная 1, если последнее столкновение шарика со стенкой было именно с левой стенкой (длиной a), и равная 0, если с другой стенкой
- 6 Число шариков M_V , оказавшихся в данный момент в выделенном малом объеме V

тема для эссе

Прокомментируйте отрывок из Божественной комедии Данте Алигьери. Какие флуктуирующие величины тут упомянуты? Какие строки можно считать поэтическим определением флуктуаций

64

Я под случайным мыслю всякий вид Созданий, все, что небосвод кружащий Чрез семя и без семени плодит.

67

Их воск изменчив, наравне с творящей Его средой, и потому чекан Дает то смутный оттиск, то блестящий. 70

Вот почему, при схожести семян, Бывает качество плодов неравно, И разный ум вам от рожденья дан.

73

Когда бы воск был вытоплен исправно И натиск силы неба был прямой, То блеск печати выступал бы явно. 76

Но естество его туманит мглой, Как если б мастер проявлял уменье, Но действовал дрожащею рукой.

графическое задание

Изобразите три траектории молекулы идеального газа с большой, малой и средней дисперсиями длин пробегов.

2.

задача

Найдите математическое ожидание и дисперсию для случайной величины, распределенной по закону Пуассона

$$P_k = \frac{\alpha^k e^{-\alpha}}{k!}, \quad k \ge 0$$

тема для эссе

Приведите свои примеры дискретных величин, распределенных по закону Пуассона.

тема для эссе

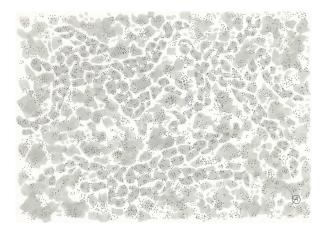


Рис. 1: Случайность на камуфляже

То, что нам на глаз кажется случайным, Пуассоновским, на самом деле часто является квазипериодическим. Так что создание случайных структур и процессов лучше доверить компьютеру. Например, дизайнер создает камуфляжный костюм со случайными пятнами. На самом деле пятна получатся примерно близкими по размеру и по расстояниям между ними. На рисунке показаны десантники в маск-халатах, ползущие по осенним листьям. Попробуйте понять, сколько их, учитывая, что рисунок на их костюмах сделан человеком. Укажите другие примеры мнимой случайности.

графическое задание

Изобразите предмет, в основе дизайна которого лежит пуассоновская последовательность каких-либо элементов.

3.

задача

Найдите математическое ожидание и дисперсию для случайной величины, распределенной по нормальному закону

$$w(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m_1)^2}{2\sigma^2}\right).$$

тема для эссе

Опишите процесс в доске Гальтона с точки зрения шарика, движущегося в ней.

тема для эссе

Приведите примеры из литературы, когда большие отклонения от среднего значения какой-либо характеристики персонажа играли существенную роль в развитии событий: Дюймовочка (рост), Шерлок Холмс (ум), Обломов (лень).

тема для эссе

Назовите авторов или художников, чей авторский стиль можно узнать по тому признаку, что какая-то величина принимает значения, далеко отстоящие от среднестатистических. (Например, в работах художников-примитивистов у всех людей большие головы).

графическое задание

Набор кружков на двух половинах листа подчиняется двум различным распределениям. Размеры одних кружков описываются экспоненциальным распределением, а вторых — гамма-распределением. Определите, какая половина соответствует снежинкам, а какая дождевым каплям, дорисуйте их и добавьте соответствующий фон.

4.

задача

На рисунке представлен лабиринт для экспериментов над жуками. Изначально голодный жук находится в одной из четырех круглых камер. На каждом временном шаге жук вбегает в один из выходящих из камеры коридоров и пробегает его до конца. Номер камеры будет случайной величиной. Выбор жуком коридора совершенно произвольный, то есть все возможные выходы из камеры равновероятны, но куда-то он точно побежит. Жук почти не обучается, не запоминает, откуда он пришел, поэтому его поведение можно описать как марковский процесс. Запишите матрицу вероятностей переходов.

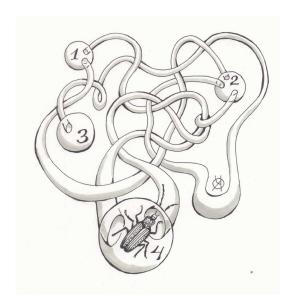


Рис. 2: Модель процесса марковских переходов

задача

Запишите управляющее уравнение для процесса распада атома с периодом полураспада λ и сравните с уравнением для процесса Пуассона.

задача

Рассмотрите ассиметричное одномерное случайное блуждание на дискретной решетке, описывающее диффузию в присутствии внешней силы. Вероятность скачка направо p > 1/2. Найдите первый и второй моменты.

задача

Для применения модели дискретных марковских процессов в общем случае важно знать время корреляции реального процесса и выбирать в качестве временного шага время большее времени корреляции. Для следующих дискретных случайных величин (1—5) подберите подходящий масштаб времен корреляции и, соответственно, шагов в модели марковского процесса: миллисекунды, секунды, сутки, года, столетия.

- 1. Число зарегистрированных комет
- **2.** Число особей в популяции крупных млекопитающих
- 3. Число импульсов, принятых нейроном
- **4.** Номер игрока, владеющего шайбой, во время хоккейного матча

5. Число инфицированных во время эпидемии.

тема для эссе

Найдите примеры изменяющихся дискретных величин в истории и литературе (например, число крупных городов, входивших в состав Византийской империи; число сопровождающих Фродо). При каком условии изменение этого числа можно считать марковским?

5.

задача

В сосуде с молекулами идеального газа есть воображаемая перегородка перпендикулярная оси ОХ. Импульсный процесс описывает моменты пересечения молекулами этой перегородки в положительном и отрицательном направлениях вдоль оси ОХ. Постройте приблизительный график импульсного процесса, соответствующий следующим ситуациям:

- 1 Пересечение единственной частицей в сосуде воображаемой перегородки
- 2 Пересечение одной, выделенной из многих, частицей в газе воображаемой перегородки
- **3** Пересечение любой частицей в газе воображаемой перегородки.

задача

Броуновская частица совершает переходы между двумя потенциальными ямами под действием тепловых шумов. При этом она большую часть времени находится в той или другой потенциальной яме, причем, чем глубже яма, тем дольше среднее время пребывания в ней частицы. ИП описывает переходы через потенциальный барьер в ту или иную сторону. Постройте график импульсного процесса. Рассмотрите так же случай двух ям одинаковой глубины.

задача

Определите, какая картинка соответствует субпуассоновской, а какая суперпуассоновской статистике; какая положительной, а ка-

кая отрицательной корреляции. Лисы тщательно охраняют свою территорию определенного размера. Эта территория обозначена метками, все другие лисицы с нее прогоняются. Поэтому, встретив одну лису маловероятно встретить другую в ближайшее время. А лисички растут колониями, принадлежащими к одной микоризе, поэтому, найдя одну, есть большая вероятность найти следующую. Подберите параметры, которыми могут быть описаны эти процессы.

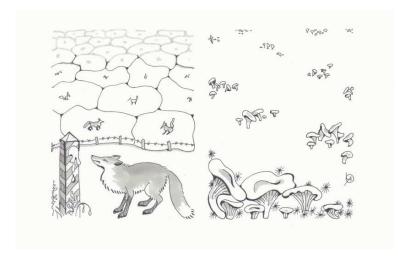


Рис. 3: Лисицы и лисички

тема для эссе

Проанализируйте влияние на историю какого-нибудь народа или города внешних импульсных процессов (например таких как, засухи, нашествия саранчи, набеги кочевников). Оцените примерно статистические характеристики этих процессов.

графическое задание

На основе графиков процессов с положительной и отрицательной периодичностью придумайте дизайн какого-то предмета. Какой тип процесса больше подходит для создания арт-объектов?

6.

задача

Рассмотрим процесс регистрации космических частиц счетчиком с рефрактерным временем. Регистрация каждой частицы моделируется δ -импульсом в соответствующий момент времени с постоянной амплитудой

 f_0 . Он представляет собой важный пример процесса с регулируемой периодичностью: импульсный пуассоновский процесс $\eta(t)$ с рефрактерным временем ϑ_0 . Докажите, что $T=\vartheta_0+1/p$. А именно, если среднее время между двумя последовательными регистрациями частиц T будет фиксированным, то, чем больше рефрактерное время ϑ_0 , тем больше вероятность p появления следующего импульса, как только это время задержки закончится. В пределе $\vartheta_0 \to T$ получается периодический процесс. Таким образом можно регулировать периодичность процесса, меняя ϑ_0 .

задача На рисунке две структуры из 64 слу-

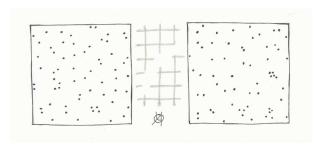


Рис. 4: Структуры. Левая — A, правая — B

чайных точек. Одна получена путем разбиения листа на клеточки. Каждая точка ставится в произвольном месте в клетке. Вторая структура получена без клеточек с примерно таким же распределением расстояний между точками. Какой из них является структура А? Как это доказать?

тема для эссе

Приведите примеры стихотворений (1) с простым периодическим ритмом; (2) наоборот, верлибр, где почти никакой периодичности нет; (3) наиболее удачное, на Ваш взгляд, стихотворение с точки зрения периодичности ритма.

тема для эссе

Рассмотрите, как удается избежать унылой периодичности в дизайне знаменитых лестниц и оград.

графическое задание

Изобразите несколько однотипных орнаментов с разной степенью периодичности. Какой из них Вы считаете наиболее красивым?

задача

Частица делает скачки длиной в 1 сантиметр. После каждого скачка она меняет направление движения случайным образом. Найдите с помощью вычислений или экспериментально, на какое в среднем расстояние она удалится от точки начала движения за 25 шагов, за 36 шагов, за 49 шагов.

тема для эссе

Сравните блуждания различных литературных героев (например, сумрачный лес у Данте, Хэмптон-Кортский лабиринт у Джерома).

графическое задание

Изобразите на основе случайной траектории некоторый узнаваемый предмет или существо.

8.

задача

Найдите информацию, заключенную в 4-х ответах на вопросы, предполагающие ответы "Да"и "Нет". Причем, во всех вопросах вероятность ответа "Да"вдвое больше вероятности ответа "Нет".

задача

Рассмотрим два одинаковых теплоизолированных сосуда с поршнями (рис. 5). В левом поршень опускается медленно, а в правом резко. После колебаний в обоих сосудах установится равновесное состояние. В каком из них поршень окажется на большей высоте?

тема для эссе

Дайте определение температуры и энтропии с точки зрения различных персонажей и исторических личностей.

графическое задание

Изобразите какой-нибудь природный объект (например, цветок, дерево или пейзаж), состоящий из нескольких частей. Затем изобразите эти части предмета (а) уложенными в идеальном порядке, (б) разбросанными по листу в состоянии максимального хаоса. Получилось смешно или жутковато?

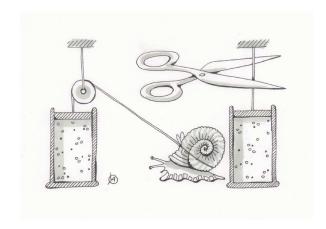


Рис. 5: Быстрый и медленный процессы

9.

задача

Преобразование пекаря состоит из однородного сжатия квадрата в 2 раза в вертикальном направлении и растяжения в горизонтальном. Далее правую половину следует отрезать и положить на левую. Так поступает пекарь, чтобы сделать слоеное тесто. Для этого преобразования найдите показатель Ляпунова.

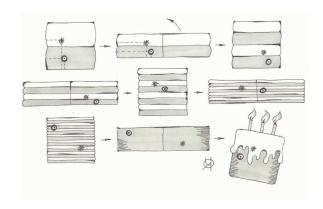


Рис. 6: Отображение двух точек

$$x_{n+1}=2x_n,\quad y_{n+1}=rac{1}{2}y_n$$
 при $0\leq x_n\leqrac{1}{2}$ $x_{n+1}=2x_n-1,\ y_{n+1}=rac{1}{2}y_n+rac{1}{2}$ при $rac{1}{2}\leq x_n\leq 1$

задача

Посчитайте число степеней свободы человечка для рисования, которого можно изгибать во всех "суставах".

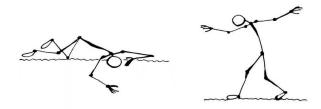


Рис. 7: Деревянный манекен для рисования

тема для эссе

Приведите примеры мелочей, определивших развитие приключенческого сюжета или хода истории.

графическое задание

Изобразите природные объекты, в основе которых ветвящиеся структуры.

10.

задача

Рассмотрим движение частицы в двумерном хаотическом бильярде площадью Ω . Оно будет описываться двумя координатами положения частицы и углом направления скорости движения частицы. Модуль скорости v не меняется. Фазовое пространство будет трехмерным, например, для бильярда Синая вот таким (рис. 8). То есть площадь самого бильярда и еще третье измерение, где откладывается угол. Причем траектории в

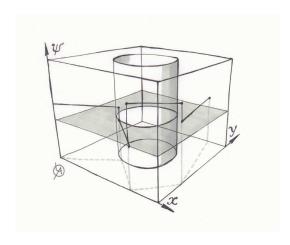


Рис. 8: Фазовое пространство Бильярда Синая этом пространстве лежат в горизонтальных

плоскостях, соответствующих углу направления скорости. При соударении со стенкой угол меняется, траектория переходит в другую плоскость. Докажите, что если скорость постоянна, то распределение в фазовом пространстве имеет вид

$$(\Omega 2\pi)^{-1}$$
.

тема для эссе

Напишите диалог двух шариков в бильярде с рассеивающей границей, стартующих с близкими начальными условиями.

графическое задание

Изобразите предмет, в основе дизайна которого лежит траектория частицы в бильярде.

11.

задача

Рассмотрим флуктуации поршня массой m и площадью S в вертикальном цилиндрическом сосуде. Над поршнем вакуум, а под ним одноатомный идеальный газ из N частиц, поддерживаемый при температуре T. Вверх поршень подталкивают удары частиц газа, как гигантскую одномерную броуновскую частицу, а вниз на него действует сила тяжести. Вдоль вертикальной оси ОХ поршень совершает случайные колебания около положения равновесия. Стохастическое дифференциальное уравнение (СДУ) для такого поршня можно записать в соответствии со вторым законом Ньютона

$$m\ddot{x} = -\gamma \dot{x} - mg + pS + \xi(t).$$

Случайные силы $\xi(t)$ характеризуются равновесным значением $D_{\xi}=kT\gamma$. Рассмотрим флуктуации поршня на временах больших времени релаксации, то есть передемпфированную систему, тогда слагаемым со второй производной можно пренебречь. Подставляем выражение для давления из уравнения Менделеева-Клапейрона p=NkT/(Sx) и получаем СДУ в стандартной форме

$$\dot{x} + \frac{mg}{\gamma} - \frac{NkT}{\gamma x} = \frac{1}{\gamma} \xi(t).$$

Докажите, что стационарное распределение флуктуаций поршня является гаммараспределением и имеет вид

$$w_{st}(x) = Cx^N \exp\left(-\frac{mgx}{kT}\right).$$

тема для эссе

Покажите соотношение сил порядка (культурный герой) и хаоса (трикстер) в мифах. (Например, Аполлон и Дионис; Тор и Локи)

12.

задача

Запишите СДУ для бистабильной системы под воздействием гармонического возмущения. А именно, для броуновской частицы, находящейся в поле с потенциальной энергией

$$V = -\frac{1}{2}x^2 + \frac{1}{8}x^4.$$

тема для эссе

Расположите известные Вам архитектурные стили в порядке возрастания разброса основных размеров и пропорций и, соответственно, уменьшения строгости канонов. Есть ли тут эффект стохастического резонанса, то есть некоторого оптимального уровня случайности?

тема для эссе

Разберите следующие пары зарифмованных слов на три группы, соответствующие трем поэтам: Симеону Полоцкому — поэту XVII в., Николаю Гумилеву — поэту Серебряного века Русской поэзии, и Ренате Мухе, писавшей смешные стихи для современных детей. Основной подсказкой будет степень случайности, спонтанности этих рифм, которая нарастала со временем.

- Этаже уже
- 2. Упрямый дамы
- 3. Жити быти
- 4. Белою делаю
- 5. Арктической практически
- 6. Родителю благодетелю

- 7. Бежит она неожиданно
- 8. Кровавой право
- 9. Старости юности
- 10. Гонимый держимый
- 11. Тонкий гипопотомки
- 12. Соблазна крестообразно
- 13. Насмерть насморк
- 14. Плененный замкненный
- 15. Вдохнуть грудь.

графическое задание

Общая идея стохастического резонанса, что для любого процесса самоорганизации нужен некоторый оптимальный уровень шумов, подтверждается множеством примеров. Более того, понятия красоты и естественности в искусстве тоже предполагают некоторую вполне определенную порцию спонтанности. Например, изображение аиста будет выглядеть странно, если оно почти лишено случайных элементов, и в том случае, если их слишком много. Изобразите один и тот же портрет или предмет несколько раз: с большим количеством мелких случайных деталей и отклонений от симметрии, совсем без них, и промежуточные состояния. Какое изображение Вам больше нравится?

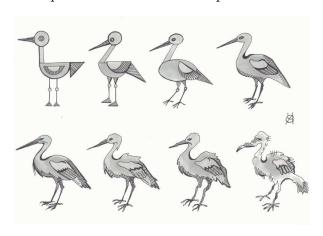


Рис. 9: Сочетание случайности и закономерности

13.

задача

Из двух формул одна описывает стопку экзаменационных билетов, а вторая игральную кость

$$S = k \ln 6, \quad \lambda = \lim_{t \to \infty f(t_0) \to 0} \frac{1}{t} \ln \frac{f(t)}{f(t_0)} = \ln 2.$$

Определите, какая что описывает, и что это за величины.

задача

Шулерский кубик массой m и стороной a со смещенным на ε центром масс поместили в сосуд, который трясут с энергией E. Он выпадает то одной, то другой стороной. Найдите вероятности выпадения каждой грани.

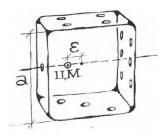


Рис. 10: Кубик со смещенным центром масс

тема для эссе

Предложите новый способ генерации случайных чисел и докажите его преимущества перед существующими.

тема для эссе

Опишите, каким, на Ваш взгляд, было влияние азартных игр на дворянское общество в XIX веке?

14.

задача

Активные броуновские частицы движутся с постоянными скоростями и ударяются в стенки сосуда. Докажите, что распределение углов падения частиц будет

$$w(x) = \frac{1}{2}\cos(\varphi).$$

тема для эссе

Возьмите короткий, хорошо известный текст (например, "Наша Таня громко плачет...") и добавьте в него много случайных деталей. Что произошло с текстом?

тема для эссе

Поразмышляйте над соотношением понятий "оригинальность" и "случайность" на примерах работ современных архитекторов и дизайнеров (Фриденсрайх Хундертвассер, Ренцо Пиано, Антуан Предок)

тема для эссе

Сравните эти два стихотворения Ахматовой и Маяковского. Может ли у них быть что-то общее?

Мне ни к чему одические рати

И прелесть элегических затей.

По мне, в стихах все быть должно некстати, Не так, как у людей.

Когда б вы знали, из какого сора

Растут стихи, не ведая стыда,

Как желтый одуванчик у забора,

Как лопухи и лебеда.

Сердитый окрик, дегтя запах свежий,

Таинственная плесень на стене...

И стих уже звучит, задорен, нежен,

На радость вам и мне.

Поэзия — та же добыча радия.

В грамм добыча, в год труды.

Изводишь единого слова ради

тысячи тонн словесной руды.

Но как испепеляюще слов этих жжение

рядом с тлением слова-сырца.

Эти слова приводят в движение

тысячи лет миллионов сердца.

графическое задание

Рассмотрите превращение геометрических фигур в животных в работах Эшера. Предположив, что реалистичное изображение соответствует оптимальному количеству случайных деталей, попробуйте продолжить этот ряд, изобразив этих же животных с чрезмерно большим количеством случайных отклонений, так, чтобы они в результате совсем затерялись в хаосе случайных линий.