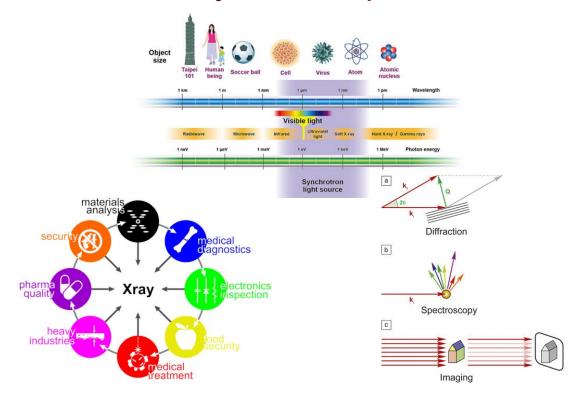
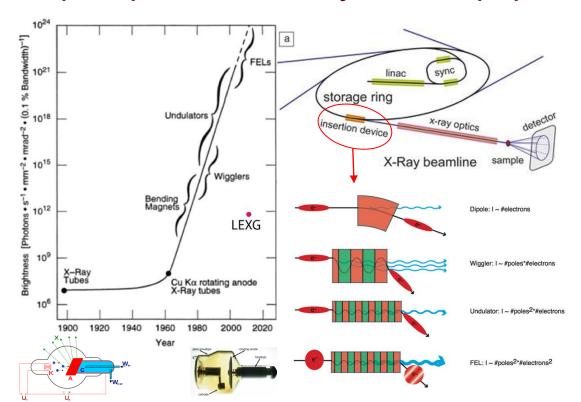
СОВРЕМЕННЫЕ ЛАЗЕРЫ: новые грани света

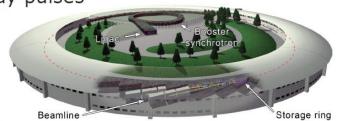
Лекция 13 ДРУГИЕ ПРИМЕНЕНИЯ ЛАЗЕРОВ. УНИКАЛЬНЫЕ ЛАЗЕРНЫЕ СИСТЕМЫ.


Лазерно-электронный генератор рентгеновского излучения – пример лазерной системы с уникальными характеристиками. Измерение основных характеристик лазерного. Преобразование лазерного излучения по частоте, пространственным характеристикам, поляризации.

ЛАЗЕРНО-ЭЛЕКТРОННЫЙ ГЕНЕРАТОР РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ.



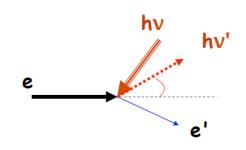
Рентгеновское излучение и его применения


Генерация рентгеновского излучения: синхротрон

Генерация рентгеновского излучения: синхротрон

Need for short X-ray pulses

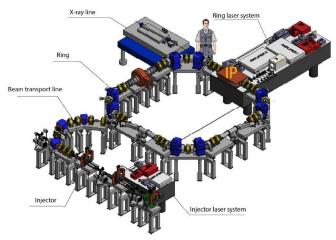
Synchrotrons: 100 ps (fs)


XFEL (X-ray Free Electron Lasers): >10 fs

Генерация рентгеновского излучения: обратное Комптоновское рассеяние

Обратное Комптоновское рассеяние: в результате встречного столкновения релятивистского электрона и фотона энергия передается последнему.

Сечение процесса Комптоновского рассеяния в случае $h v \ll m_e c^2$ стремится к сечению Томсоновского рассеяния:



$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{4\pi \varepsilon_0 m_e c^2} \right)^2 = 6,652 \cdot 10^{-29} \text{ m}^2$$

$$r_e = \frac{e^2}{4\pi \varepsilon_0 m_e c^2} = 2,8 \cdot 10^{-15} \text{ m}$$

Характеристики лазерно-электронного генератора рентгеновского излучения

X-ray photon energy	20 – 40 keV
X-ray beam size on a sample	<5μ
X-ray beam divergency on a sample	<1 mrad
Average X-ray photon flux density on a sample	>10 ¹¹ ph/sec•mm ²
X-ray photon flux stability	$\pm 10\%$ in hour
Size, approximate (L•W•H)	7•4•1.8 m ³
Electric power consumption	<100kW

Оценка параметров генератора

Number of photons per unit time:
$$\frac{dN_{ph}}{dt} = \sigma_{Th}L$$

 σ_{Th} = 6.65×10⁻²⁵ cm² - Thomson scattering cross section, **L**-Luminosity

Luminosity:
$$L = f_{rep} N_e N_{ph} G$$

Luminosity:
$$L = f_{rep}N_eN_{ph}G$$
 Goal 1.5×10³⁶ s⁻¹cm⁻² LHC luminosity is 10³⁴ s⁻¹cm⁻²

 f_{rep} - frequency of collisions,

 N_{ρ} - number of electrons in bunch,

 $N_{ph}\,\,$ - number of photons in pulse,

G - geometrical factor

 $f_{ren}N_e
ightarrow$ average beam current

LHC – Large Hadron Collider

Оценка параметров генератора

Parameters, defining luminosity are tightly connected with each other

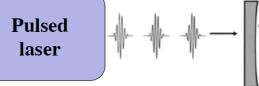
$$f_{rep} = \frac{c}{C} N_b$$
 C — ring orbit circumference, c — speed of light, N_b - number of bunches in ring

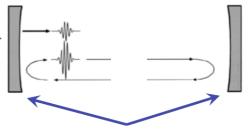
$$C \approx 15 \text{ m}, N_b = 4 + f_{rep} \approx 79 \text{ MHz}$$

 $N_e=rac{Q_b}{q},\,Q_b$ - bunch charge, $q=1.6 imes10^{-19}{
m C}$ Bunch charge defines numerous parasitic phenomena in the injector and ring. $Q_b=1~{
m nC}$ – is upper limit for bunch charge. Thus, **limit for** $N_e=6.25 imes10^9$

 $N_{ph}=rac{W_{ph}}{E_{ph}}$, W_{ph} - laser pulse energy, E_{ph} - photon energy W_{ph} is limited by mirrors of laser resonator. $W_{ph}\approx 20~{
m mJ}$, $E_{ph}\approx 1~{
m eV}$ Thus, limit for $N_{ph}\approx 1.25 \times 10^{17}$

Оценка параметров лазерной системы генератора


Wavelength	~ 1052 nm
Laser pulse energy in the resonator	More than 20 mJ
Laser pulse duration	Less than 30 ps
Full width half maximum laser beam diameter in the interaction zone	40+/-10 microns
Non-uniformity of the fluence distribution over the focal spot *	< 20%
Laser pulse repetition rate **	~ 79 MHz


$$\langle P_{opt} \rangle = 20 \$$
мДжс · 79 МГ $\mu = 1,58 \$ МВ m

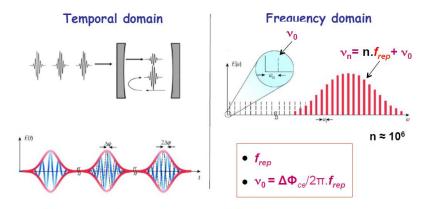
Накопление [«усиление»] лазерных импульсов

Pulse stacking

Fabry-Perot cavity

Finesse and Gain:

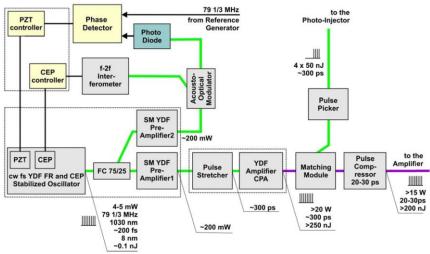
High reflectivity mirrors


$$F = \frac{\Delta v_L}{\delta v} = \frac{\pi \sqrt{R}}{T} \qquad G = \frac{F}{\pi} \approx 100 - 10000 \qquad \tau = \frac{2FL}{\pi c}$$

$$G = 1000 \implies 1,58 \text{ kBt} \rightarrow 1,58 \text{ MBt}$$

Накопление [«усиление»] лазерных импульсов

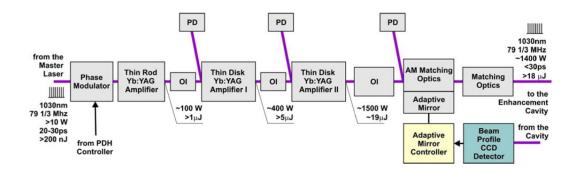
Наличие дисперсии и нелинейности элементов резонатора непрерывных лазеров с синхронизацией мод приводит к последовательному сдвигу фазы оптических колебаний относительно огибающих импульсов выходного излучения. (Carrier Envelope Offset – CEO)


Fabry-Perot cavity: pulsed regime

Locking: matching each tooth of the frequency combs

Feedback with 2 degrees of freedom: Dilatation & translation

Схема задающего генератора и волоконной части лазерной системы

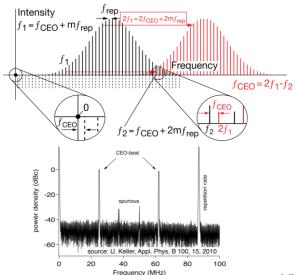

PZT – пьезоэлектрический привод CEP – фаза между огибающей и несущей

FR – частота повторения

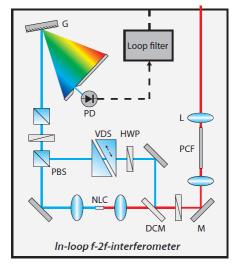
FC – волоконный разветвитель

SM YDF – одномодовое волокно с активными ионами Yb CPA – усилитель чирпированных импульсов

Схема усилительных каскадов лазерной системы накачки оптического накопителя


PD – фотоприемник

ОІ – оптичесий изолятор

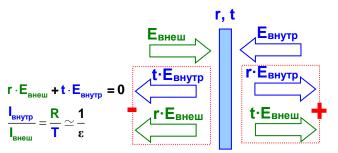

АМ – адаптивное зеркало

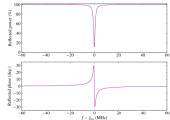
PDH - Pound-Drever-Hall метод стабилизации

Схема стабилизации фазы огибающей и несущей

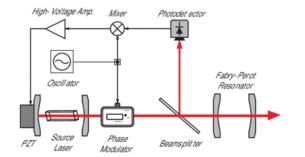
L- линза М - зеркало PCF – фотонно-кристаллическое волокно (спектральное уширение) DCM – дихроичное зеркало

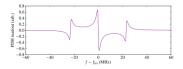
HWP – полуволновая пластинка

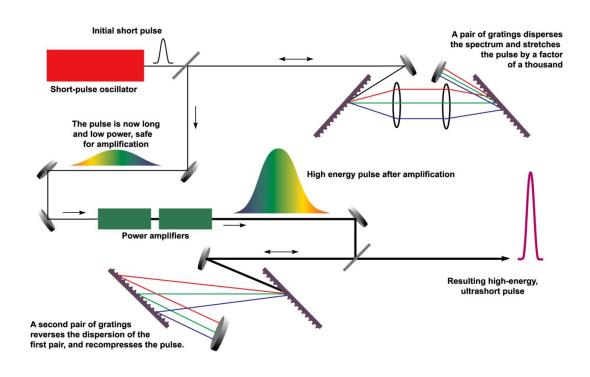

NLC – нелинейный кристалл (2ω)

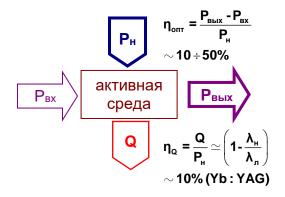

PBS – поляризационный делитель

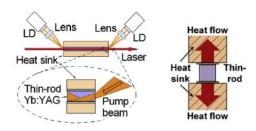
пучка


VDS – линия задержки

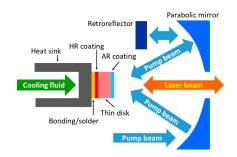

Pound-Drever-Hall метод стабилизации длины резонатора


При детектировании отраженного сигнала фаза (соотношении длин резонаторов) не влияет на интенсивность.



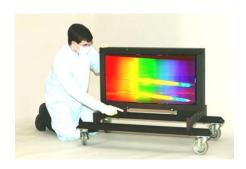

Небольшая ВЧ-модуляция падающего излучения позволяет фазовую расстройку перевести в амплитудную.

Усиление чирпированных импульсов


Усиление в тонком стержне и тонком диске

Тонкий стержень

- + большой коэффициент усиления на проход
- + простая схема накачки
- + снижение температуры при увеличении длины
- неоднородный нагрев при радиальном оттоке тепла ограничивает макс. мощность накачки



Тонкий диск

- + продольный отток тепла позволяет использовать мощную накачку
- маленький коэффициент усиления на проход
- сложная схема накачки

ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Характеристики лазерного излучения

- 1. Энергетические характеристики Мощность, энергия, плотность мощности/энергии, счет фотонов
- 2. Спектральные характеристики Длина волны, частота, форма спектра
- 3. Пространственные характеристики Ширина пучка, расходимость, качество пучка, профиль интенсивности, стабильность направления, длина/радиус когерентности
- 4. Временные характеристики Длительность импульса, форма импульса, время когерентности
- 5. Фазовые характеристики Форма волнового фронта, чирп
- 6. Поляризационные характеристики Плоскость поляризации, эллиптичность поляризации, степень поляризации

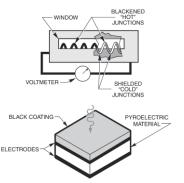
Измерение энергетических характеристик

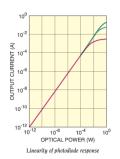
1. Тепловые методы

Термоэлектрические: термопара, термостолбик - несколько термопар, соединенных последовательно для усиления термоэлектрического эффекта. Высокая чувствительность, измерение мощности/энергии, широкий спектральный диапазон, низкое быстродействие.

Пироэлектрики - кристаллические диэлектрики, способные к спонтанной поляризации, в том числе, при изменении температуры. Для измерения энергии импульсов, широкий спектральный диапазон, быстродействие выше, чем у термоэлектриков.

2. Фотоэлектрические методы


Фотодиодные приемники – широкий диапазон линейной характеристики при измерении мощности, высокое быстродействие


3. Пондеромоторные методы

Давление света на крутильные весы

4. Счет фотонов

ФЭУ, лавинные фотодиоды

Измерение спектральных характеристик

1. Интерференционная спектроскопия

Интерферометр Фабри-Перо

2. Дисперсионная спектроскопия

Призменный монохроматор

3. Дифракционная спектроскопия

Монохроматор с дифракционными решетками

4. Сравнение с эталонным источником

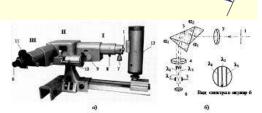
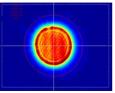
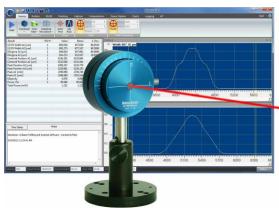
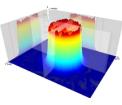




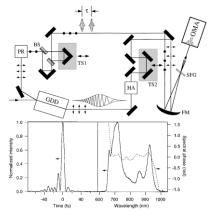
Рис. 2. Универсальный монохроматор УМ-2 а) внешний вид, б) оптическая схема


Измерение пространственных характеристик

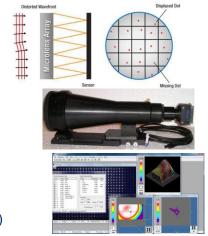
- 1. Сканирование луча одиночным фотоприемником
- 2. Матричный детектор

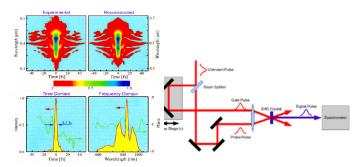
Измерение временных характеристик

- 1. Фотодиодный приемник
- 2. Стрик-камера
- 3. Автокоррелятор



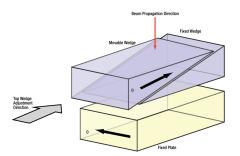
OPERATING PRINCIPLE Sweep electrode (where electrons are swept in the Sweep circuit direction from top Streak image to bottom) on phosphor screen Optical 000 - Space Accelerating electrode Phosphor screen Incident light (where electrons (electrons → light) Photocathode are accelerated) The intensity of the incident light (light → electrons) can be read from the brightness (which multiplies of the phosphor screen, and the electrons) time and space from the position of the phosphor screen


Измерение фазовых характеристик

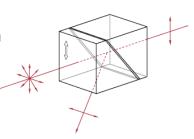

- 1. Датчик волнового фронта Шака-Гартмана (пространственная фаза колебаний)
- 2. Спектральные измерения с временным разрешением при регистрации автокорреляционных функций (фаза колебаний во времени).

SPIDER (Spectral phase interferometry for direct electric-field reconstruction)

FROG (Frequencyresolved optical gating)


Измерение/преобразование поляризационных характеристик __

1. Вращение плоскости поляризации

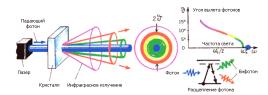

Двулучепреломляющие полуволновые пластинки Волновые пластинки на эффекте оптической активности Ячейка Фарадея

2. Изменение состояния поляризации Двулучепреломляющая четвертьволновая пластинка Ячейка Поккельса

Компенсатор Бабине-Солейля

Поляризационная призма

ЖК поляризационный вращатель


Преобразование лазерного излучения по частоте

1. Преобразование излучения со сдвигом по частоте вниз

Параметрический генератор света

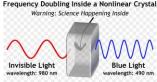
$$\omega_{H} = \omega_{C} + \omega_{X}$$

$$\overrightarrow{k}_{H} = \overrightarrow{k}_{C} + \overrightarrow{k}_{X}$$

2. Преобразование излучения со сдвигом по частоте вверх

Генерация суммарной частоты

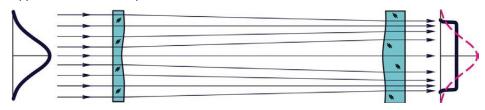
$$\omega_1 + \omega_2 = \omega_3$$

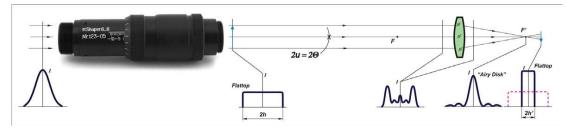

$$\overrightarrow{k_1} + \overrightarrow{k_2} = \overrightarrow{k_3}$$

Генерация второй гармоники

$$2\omega_1=\omega_2$$

$$2\overrightarrow{k_1} = \overrightarrow{k_2}$$





Преобразование лазерного излучения по пространственным характеристикам

1. Преобразование профиля интенсивности

Рефрактивные шейперы

