Задачи и упражнения к межфакультетскому курсу «Категориальные грамматики» (весна 2016 г.)

1. Синтаксическим типом называется (правильно построенное) выражение, составленное из переменных p_1, p_2, p_3 и т. д. с помощью знаков $\cdot, /, \setminus$ и скобок. Рассмотрим алфавит

$$\Sigma = \{smiles, sees, gives, a, the, book, car, student, strange, new\}.$$

В примерах, относящихся к синтаксису естественных языков, элементы в цепочке будем разделять пробелами (например, запись the student smiles обозначает цепочку $\langle the, student, smiles \rangle$ длины 3). Рассмотрим функцию f, ставящую в соответствие элементам алфавита Σ синтаксические типы и определённую так:

$$f(smiles) = p_2 \setminus p_1, \ f(sees) = (p_2 \setminus p_1) / p_2, \ f(gives) = ((p_2 \setminus p_1) / p_2) / p_2, \ f(a) = f(the) = p_2 / p_3,$$

 $f(book) = f(car) = f(student) = p_3, \ f(strange) = f(new) = p_3 / p_3.$

Обозначим через L язык, состоящий из таких цепочек $a_1a_2\dots a_n\in\Sigma^+$, для которых секвенция $f(a_1),f(a_2),\dots,f(a_n)\to p_1$ выводится в исчислении Ламбека. Например, the student smiles $\in L$, так как секвенция $p_2 \ / \ p_3,p_3,p_2 \ \backslash \ p_1 \to p_1$ выводится в исчислении Ламбека. Принадлежит ли языку L цепочка

- a) the student sees a new strange car?
- **6)** a student gives the new student a book?
- **B)** smiles a student?
- г) a book sees a book?
- д) a car sees a student a book?
- 2. Постройте выводы следующих секвенций в исчислении Ламбека:
 - a) q/(s/np), s/inf, $inf/np \rightarrow q$ (q, s, np, inf— примитивные типы);
 - **6)** $A \setminus (B / C) \rightarrow (A \setminus B) / C$;
 - в) $B \setminus C \to (A \setminus B) \setminus (A \setminus C)$ и $C / B \to (C / A) / (B / A)$;
 - Γ) $A \rightarrow (B/A) \setminus B$ и $A \rightarrow B/(A \setminus B)$;
 - \mathbf{A}) $(B / A) \setminus B \rightarrow ((A \setminus B) / A) \setminus (A \setminus B)$.
- 3. Найдите тип λ -терма λy^D .(THE(λx^D .(LOVE(x)(y)))), если LOVE имеет тип $D \to (D \to T)$, а THE имеет тип $(D \to T) \to D$.
- 4. Является ли правильно построенным λ -термом выражение **a**) λy^D .(THE(λx^D .(LOVE(x)))), где LOVE имеет тип $D \to (D \to T)$, а THE имеет тип $(D \to T) \to D$? **6**) λy^D .(THE(λx^D .(LOVE(x)))), где LOVE имеет тип $D \to (D \to T)$, а THE имеет тип $(D \to T) \to D$?
- **5.** Приведите λ -терм к нормальной форме (т.е. примените все возможные β -редукции):
 - a) $(\lambda x.(LOVE(x)(x)))$ (NARCISSUS);
 - **6)** $(\lambda R.(R(MARY)))(\lambda y.\lambda x.(LIKE(x)(y)))(JOHN);$
 - **B)** $(\lambda R.(\lambda f.R(R(f(\text{JOHN}))))(\text{NOT})(\text{RUN}).$
- **6.** Подберите подходящие синтаксические типы и выведите в категориальной грамматике Ламбека следующие английские предложения.
 - a) John gave Mary the flower.
 - б) John believes that Mary loves Pete.
 - B) The girl whom John loves loves the boy who loves Kate.
 - r) Mary loves Pete and hates John.
 - д) John didn't run and jump.
 - e) Bill hates the girl whom John loves and who loves Pete.

- ж) John met Ann or Kate yesterday.
- 3) John saw Bill yesterday and Mary today.
- и) John gave the book or sent the file to Ann.

Подберите подходящую семантическую разметку и постройте для каждого предложению λ -терм (типа s), выражающий его семантическое значение.

- 7. Подберите подходящие синтаксические типы и выведите двумя способами (с разными семантическими значениями) в категориальной грамматике Π амбека: $pyramid\ near\ the\ box\ on\ the\ table\ (типа\ n)$.
- 8. Пусть типу D соответствует множество элементов {JOHN, MARY, PETE, KATE}, а типу T множество логических значений {0,1}. Сколько элементов содержит множество, соответствующее типу ${\bf a}$) $D \to T$? ${\bf b}$) $(D \to T) \to T$? ${\bf b}$) $(T \to T) \to T$?
- 9. В этой задаче следует считать, что алфавит состоит из символов C (согласный), V (гласный) и (слогораздел). а) Задайте регулярным выражением множество слов, в которых 3 слога, один из которых открытый. б) Задайте регулярным выражением множество слов, в которых не более 3 слогов, а между гласными идёт не более 2 согласных (символ слогораздела не использовать). в) Задайте регулярным выражением множество слов, в которых нет открытых слогов, а между гласными идёт не более 2 согласных.
- **10.** Постройте регулярное выражение или конечный автомат для множества словоизменительных суффиксов какого-нибудь агглютинативного языка (финский, турецкий, ...). Рассматривать слова какойлибо фиксированной части речи. ¹
- 11. Докажите, что множество палиндромов не задаётся никаким конечным автоматом.
- **12.** Докажите, что множество слов вида ww над алфавитом a, b не задаётся никакой контекстно-свободной грамматикой.
- **13. a)** Постройте адекватную контекстно-свободную грамматику для английского языка, в которой бы выводилось предложение *John likes and Mary hates Peter.* **6)** Добавьте к правилам предыдущей грамматики семантическую составляющую, чтобы данное предложение получало адекватную семантику.
- **14. а)** Постройте адекватную контекстно-свободную грамматику для английского языка, в которой бы выводилось преложение *John knows what Mary likes*. **б)** Добавьте к правилам предыдущей грамматики семантическую составляющую, чтобы данное предложение получало адекватную семантику.
- **15.** Является ли автоматным следующий язык над алфавитом $\{a, b, c\}$?
- a) {aba, ababa, abababa, ...} б) {abc, ababcc, abababccc, ...} в) {baac, bbac, baacc, bbacc, baaccc, bbaccc, ...}
- **16.** Найдите все слова длины 6 в алфавите $\{a,b,c\}$, выводимые в грамматике $S \to Sc, S \to T, T \to aTb, T \to c.$
- 17. Найдите 6 корректных предложении (типа s) в следующей грамматике Ламбека. (В этой грамматике 5 примитивных типов s, n_N , n_A , m_N , m_A .)

n_N	studento
$\mid n_A \mid$	studenton
np_N/n_N	la
np_A/n_A	la
n_N/n_N	nova
n_A/n_A	novan
$(np_N \setminus s)/np_A$	invit is

 $^{^{1}}$ Это задача для самостоятельного домашнего исследования. На зачёте подобных задач не будет.

18. Рассмотрим следующую грамматику Ламбека с тремя примитивными типами (s, n, np).

np/n	the, a
$\mid n \mid$	girl, car
np	water
n/n	girl, car, water
$np \setminus s$	smiled
$(np \setminus s)/np$	needed
$((np \setminus s) \setminus (np \setminus s))/np$	$\mid in \mid$
$(n \setminus n)/np$	$\mid in \mid$
$(n \setminus n)/(np \setminus s)$	that

Какая выводимая секвенция позволяет установить корректность следующего предложения (типа s)?

- a) The girl smiled in the car. 6) The girl in the car needed water. B) The girl in the car that needed water smiled.
- г) The girl needed the car in water. д) The girl needed water in the car. e) The water car needed a car girl.
- 19. Рассмотрим следующую грамматику Ламбека.

np/n	the
$\mid n \mid$	saw, well
n/n	saw, well
$np \setminus s$	saw
$(np \setminus s)/np$	saw
$(np \setminus s) \setminus (np \setminus s)$	well

Какая выводимая секвенция позволяет установить корректность следующего предложения (типа s)?

- a) The well saw. 6) The well saw well. B) The well saw the saw. r) The saw saw the well well.
- 20. Выводима ли в синтаксическом исчислении Ламбека секвенция
- a) $s/pp, pp/np, np/n \rightarrow s/n$?
- **6)** $s/np, pp/np, pp/n \rightarrow s/n$?
- **B)** $s/np, np \setminus np, np/n \rightarrow s/n?$
- Γ) $s/np, np/n, np \setminus np \rightarrow s/n$?
- 21. Найдите семантический тип, соответствующий следующему синтаксическому типу:
- a) $(((s/np)/np) \setminus s)/np; \mathbf{6})$ $n \uparrow s; \mathbf{B})$ $(np \uparrow s) \uparrow s; \mathbf{r})$ $s \uparrow (np \uparrow s).$
- **22.** Существует ли формальный язык в алфавите $\{a, b, c, d\}$, который можно задать грамматикой Ламбека, но нельзя задать контекстно-свободной грамматикой в нормальной форме Грейбах?
- 23. Найдите грамматику Ламбека, эквивалентную грамматике

$$NP
ightharpoonup the Ord N$$
 $NP
ightharpoonup the N$
 $NP
ightharpoonup his N$
 $NP
ightharpoonup every N$
 $Ord
ightharpoonup sixth$
 $N
ightharpoonup good N$
 $N
ightharpoonup friend$
 $N
ightharpoonup friend Prep NP$
 $Prep
ightharpoonup of$

(здесь алфавит $\{the, his, every, sixth, good, friend, of\}$).

24. Вычислите

$$\begin{bmatrix} a : \begin{bmatrix} b : M \\ c : [d : E] \end{bmatrix} \\ c : [b : [f : L]] \end{bmatrix} \sqcup \begin{bmatrix} a : [c : [1]] \\ c : [b : [1]] \end{bmatrix}.$$