Категориальные грамматики Лекция 6 (23.03.2016). Часть 2 Грамматики Ламбека и контекстно-свободные грамматики

Степан Кузнецов, Мати Пентус, Алексей Сорокин

МГУ им. М. В. Ломоносова, межфакультетский курс, весенний семестр 2015/2016 учебного года

Теорема

Если формальный язык можно задать грамматикой Ламбека, то его также можно задать контекстно-свободной грамматикой.

Пример

Грамматика Ламбека.

синт. тип	простейшие выражения
np\s	works, sleeps
np	John, this
n	idea
np/n	the, this
n/n	green, colourless

Грамматически корректное предложение.

This colourless green idea sleeps. $(np/n), (n/n), (n/n), n, (np\s) \rightarrow s$

Определение

Длиной типа называется число вхождений примитивных типов.

Пример

$$||np|| = 1$$

 $||np \setminus s|| = 2$
 $||np/n|| = 2$
 $||n/n|| = 2$
 $||(np \setminus s)/np|| = 3$
 $||s/(np \setminus s)|| = 3$

Соответствующая контекстно-свободная грамматика.

 $\Sigma = \{\text{works, sleeps, John, idea, the, this, green, colourless}\}$ $N = \{s, n, np, (s \setminus s), (s \setminus n), (s \setminus np), (n \setminus s), (n \setminus n), (n \setminus np), (np \setminus s), (np \setminus n), (np \setminus np), (np \setminus$ (s/s),(s/n),(s/np),(n/s),(n/n),(n/np),(np/s),(np/n),(np/np), $(s \cdot s).(s \cdot n).(s \cdot np).(n \cdot s).(n \cdot n).(n \cdot np).(np \cdot s).(np \cdot n).(np \cdot np)$ $s\mapsto s(s\backslash s)$ $(np \ s) \mapsto works$ $s \mapsto n(n \backslash s)$ $(np \ s) \mapsto sleeps$ $s \mapsto np(np \backslash s)$ $np \mapsto John$ $s\mapsto (s/s)s$ $n \mapsto idea$ $s\mapsto (s/n) n$ $(np/n) \mapsto the$ $s \mapsto (s/np) np$ $(np/n) \mapsto this$ $np \mapsto this$ $n \mapsto (n/n) n$ $(n/n) \mapsto \mathsf{green}$ $np \mapsto (np/n) n$ $(n/n) \mapsto \text{colourless}$ $(n/n) \mapsto (n/n)(n/n)$ $(np \cdot np) \mapsto np np$ $(an \cdot an) \mapsto (an/an) (an \cdot an)$ (Всего 144 правила.)

$$s \mapsto s (s \setminus s)$$

 $s \mapsto n (n \setminus s)$
 $s \mapsto np (np \setminus s)$
 $s \mapsto (s/s) s$
 $s \mapsto (s/n) n$
 $s \mapsto (s/np) np$
 \vdots
 $n \mapsto (n/n) n$
 $np \mapsto (np/n) n$
 $(n/n) \mapsto (n/n) (n/n)$
 \vdots
 $(np \cdot np) \mapsto np np$
 $(np \cdot np) \mapsto (np/np) (np \cdot np)$

$$(np \ s) \mapsto \text{works}$$

 $(np \ s) \mapsto \text{sleeps}$
 $np \mapsto \text{John}$
 $n \mapsto \text{idea}$
 $(np/n) \mapsto \text{the}$
 $(np/n) \mapsto \text{this}$
 $np \mapsto \text{this}$
 $(n/n) \mapsto \text{green}$
 $(n/n) \mapsto \text{colourless}$

$$s \mapsto np(np \setminus s) \mapsto (np/n) n(np \setminus s) \mapsto (np/n)(n/n) n(np \setminus s) \mapsto (np/n)(n/n)(n/n) n(np \setminus s) \mapsto \dots \mapsto \text{this colourless green idea sleeps}$$

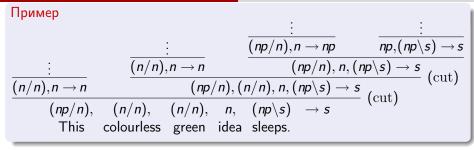
Аксиомы и правила исчисления Ламбека.

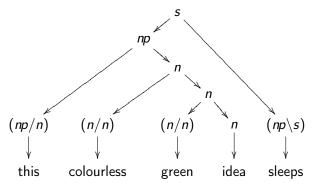
$$A \rightarrow A$$

$$\frac{\Phi \to \mathcal{B} \qquad \Gamma, \mathcal{B}, \Delta \to \mathcal{A}}{\Gamma, \Phi, \Delta \to \mathcal{A}} \text{ (cut)}$$

$$\dfrac{A,\Pi o B}{\Pi o (A \backslash B)} \; (o \backslash) \; ($$
если $\Pi \;$ непуста $)$

 $\frac{\Pi, A \to B}{\Pi \to (B/A)} \ (\to/) \ (если \ \Pi \ непуста)$


$$\frac{\Phi \to A}{\Gamma, (B/A), \Phi, \Delta \to C} (/\to)$$


 $\frac{\Phi \to A}{\Gamma, \Phi, (A \backslash B), \Delta \to C} (\backslash \to)$

$$\frac{\Gamma \to A \qquad \Delta \to B}{\Gamma, \Delta \to (A \cdot B)} \ (\to \cdot)$$

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, (A \cdot B), \Delta \to C} \ (\cdot \to)$$

Если секвенция $\Gamma \to A$ выводится в исчислении Ламбека, то пишут $L \vdash \Gamma \rightarrow A$.

Теорема (Ламбек, 1958)

Любую секвенцию, выводимую в исчислении Ламбека, можно вывести без использования правила (cut).

```
Пример
                           \frac{\overline{(n/n), n \to n} \quad np \to np}{\underline{(np/n), (n/n), n \to np}} \ (/\to) \quad \frac{\dots}{np, ((np \setminus s)/np), np \to s} 
np, \quad ((np \setminus s)/np), \quad (np/n), \quad (n/n), \quad n \to s 
(cut)
                                                   John visits a strange city.
                             \frac{\dots}{\frac{(n/n),\, n\to n}{np,\, ((np\backslash s)/np),\, np\to s}} \frac{\dots}{np,\, ((np\backslash s)/np),\, np\to s} (\mathrm{cut})
\frac{np,\, ((np\backslash s)/np),\, (np/n),\, (n/n),\, n\to s}{np,\, ((np\backslash s)/np),\, (np/n),\, (n/n),\, n\to s} (/\to)
                                                  \frac{\overbrace{(\textit{n/n}),\textit{n}\rightarrow \textit{n}}^{\dots}}{\textit{np},((\textit{np}\backslash s)/\textit{np}),\textit{np}\rightarrow s}} \underset{\textit{np},((\textit{np}\backslash s)/\textit{np}),(\textit{n/n}),\textit{n}\rightarrow s}{\dots} (/\rightarrow)
```

Вывод с сечением.

$$\frac{\underset{n \rightarrow n}{\underbrace{n \rightarrow n}} \underset{n \rightarrow n}{\underbrace{n \rightarrow n}} \frac{\underset{n \rightarrow n}{\underbrace{n \rightarrow n}} \underset{(np/n), n \rightarrow np}{\underbrace{n \rightarrow n}} \frac{\underset{np \rightarrow np}{\underbrace{np \rightarrow np}} \underset{np, (np \setminus s) \rightarrow s}{\underbrace{np \rightarrow np}} \underset{(np/n), (n/n), n, (np \setminus s) \rightarrow s}{\underbrace{(np/n), n, (np \setminus s) \rightarrow s}} (\text{cut})}{(\text{cut})}$$

Результат устранения сечения.

$$\frac{n \rightarrow n}{(np/n), (n/n), (np \setminus s) \rightarrow s} \xrightarrow{(np/n), (np \setminus s) \rightarrow s} (/\rightarrow)$$

$$\frac{n \rightarrow n}{(np/n), (n/n), (np \setminus s) \rightarrow s} \xrightarrow{(/\rightarrow)} (/\rightarrow)$$

$$\frac{n \rightarrow n}{(np/n), (n/n), (n/n), (np \setminus s) \rightarrow s} (/\rightarrow)$$

Определение

Секвенция называется тонкой, если каждый встречающийся в ней примтитивный тип встречается там ровно два раза.

Теорема

Если секвенция выводима, то она получается из некоторой тонкой выводимой секвенции путём переименования примитивных типов.

Пример

Секвенцию

$$(np/n), (n/n), (n/n), n, (np\s) \rightarrow s$$

можно получить из тонкой секвенции

$$(np/n), (n/r), (r/q), q, (np \setminus s) \rightarrow s.$$

$$\frac{n \rightarrow n}{np,(np \backslash s) \rightarrow s} (\backslash \rightarrow)$$

$$\frac{n \rightarrow n}{(np/n), n,(np \backslash s) \rightarrow s} (/ \rightarrow)$$

$$\frac{n \rightarrow n}{(np/n), (n/n), n,(np \backslash s) \rightarrow s} (/ \rightarrow)$$

$$\frac{(np/n), (n/n), (n/n), n, (np \backslash s) \rightarrow s}{(np/n), (n/n), n, (np \backslash s) \rightarrow s} (/ \rightarrow)$$

$$\frac{n \rightarrow n}{np, (np \backslash s) \rightarrow s} (\backslash \rightarrow)$$

$$\frac{r \rightarrow r}{(np/n), (n/r), r, (np \backslash s) \rightarrow s} (/ \rightarrow)$$

$$\frac{q \rightarrow q}{(np/n), (n/r), (r/q), q, (np \backslash s) \rightarrow s} (/ \rightarrow)$$

Пример

```
John, that, petrol
np
np/n
                   the, that
                   saw, petrol, canister, can
n
n/n
                   saw, petrol, canister, can
np \slash s
                    leaked
(np \slash s)/np
                   saw
                   that
((np \slash s)/s)/t
                   saw
                   leak
i/np
                   see, saw
(np \slash s)/i
                   can
((np \slash s)/i)/np
                   saw
```

John saw the canister. np, $((np \slash s)/np)$, (np/n), $n \rightarrow s$

Petrol can leak. np, $((np \ s)/i)$, $i \rightarrow s$

Пример

```
John, that, petrol
np
np/n
                   the, that
                   saw, petrol, canister, can
n
n/n
                   saw, petrol, canister, can
np \slash s
                    leaked
(np \slash s)/np
                   saw
                   that
((np \slash s)/s)/t
                   saw
                   leak
i/np
                   see, saw
(np \slash s)/i
                   can
((np \slash s)/i)/np saw
```

John saw that petrol leaked. np, $(((np\s)/s)/t)$, t, np, $(np\s) \rightarrow s$

John saw the canister leak. np, $(((np\s)/i)/np)$, (np/n), n, $i \rightarrow$

Задача

np	John, that, petrol
np/n	the, that
n	saw, petrol, canister, can
n/n	saw, petrol, canister, can
np\s	leaked
$(np \slash s)/np$	saw
t	that
$((np \slash s)/s)/t$	saw
i	leak
i/np	see, saw
$(np \backslash s)/i$	can
$((np \slash s)/i)/np$	saw

Какая выводимая секвенция позволяет установить корректность следующего предложения?

John saw that petrol can leak.